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Abstract 

 This report describes data collection and analysis of solar photovoltaic (PV) 

equipment events, which consist of faults and failures that occur during the normal 

operation of a distributed PV system or PV power plant. We present summary statistics 

from locations where maintenance data is being collected at various intervals, as well 

as reliability statistics gathered from that data, consisting of fault/failure distributions 

and repair distributions for a wide range of PV equipment types. 
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1. INTRODUCTION 

This paper provides a summary of photovoltaic (PV) component maintenance data collected and 

analyzed by Sandia National Laboratories (SNL) in support of the PV Operations and 

Maintenance project led by the National Renewable Energy Laboratory (NREL). Some of this 

data collection was initiated in 2003 by SNL under a separate project with more recent data 

collected during the FY 2016-2018 period of project performance. 

The purpose of this data collection and analysis is to provide statistical insight into how 

components fault and fail in a PV system or power plant. This information can be used to inform 

software such as the PV O&M Cost Model (NREL, 2016), developed by NREL, the SunSpec 

Alliance (SunSpec) and SNL. Many of the failure distributions presented here can be used with 

the SNL PV-Reliability Performance Model (Klise et al., 2017) which is now a feature within 

NRELs System Advisor Model (SAM) for simulating how faults and failures can impact lifetime 

energy performance and cost. 

As data collection efforts continue, the appendices in this report will be updated along with 

discussion on insights gained from additional years of data collection, and addition of new sites 

to the database. 
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2. DATA COLLECTION SUMMARY 

2.1. Portfolio Description 

The main data collection effort started in 2007 when SNL had access to maintenance records 

from the Springerville power plant in Arizona (Collins et al., 2009; Collins et al., 2010; Klise et 

al., 2014). Additional efforts were made with an O&M provider in Arizona starting in 2011, with 

1.75 MW of PV distributed generation (DG). Two additional data partners as described in Klise 

et al., 2014 with 0.45 MW of DG and 34 MW of utility scale generation started delivering data in 

2014, however the data was not complete as the data partners discontinued participation. Two 

additional data partners were brought in during 2015 and include owner-operators with large 

portfolios of DG and utility-scale installations that span multiple U.S. states. Since the start of 

the current phase of the project, with NREL as a partner in supporting the development of 

additional reliability distributions, the database increased 24% with the addition of 61 more PV 

systems from what is labeled as Portfolio D (Figure 1). The reliability data presented here will be 

from four portfolios as presented in Table 1.  

Table 1. Portfolio Summary 

Portfolio 
Commissioning 

year 

Data 
collection 

range 

Number 
of PV 

systems 
MWDC 

% of DG 
systems 

% of 
utility 
scale 

systems 

A 2003 2003-2008 1 3.5 0 100 

B 2008-2009 2012-2014 2 1.75 100 0 

C 2008-2016 2015-2016 180 578 3.4 96 

D 2010-2017 2013-2017 61 25.6 100 0 

 

2.2. Component Fault/Failure Summaries 

For the portfolio of maintenance data, only 109 out of the 189 PV systems have maintenance 

data recorded against specific components. This represents around 510 MWDC out of a total 780 

MWDC. The data collection range is limited for each portfolio as shown in Table 1. Some of the 

portfolios only show events at the inverter level, with discussion on what may have caused an 

inverter to trip based on an issue with a module string, or combiner, for example.  

 

Table 2 presents a summary of some of the major components in each portfolio. Other 

components, such as disconnects or strings, for example, are tracked for faults and failures, 

though counts of those components are not available.  
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Table 2. Component Summary for Each Portfolio 

Portfolio 
Unique 
module 

manufacturers 

Unique 
module 
models 

Total 
number of 
modules 

Unique 
inverter 

manufacturers 

Unique 
inverter 
models 

Total 
number 

of 
inverters 

A 1 1 11,700 1 1 26 

B 1 2 7,830 1 2 7 

C 19 51 2,636,626 10 47 970 

D 11 25 83,891 8 29 129 

Total 24i 58i 2,740,047 12i 50i 1132 

i ï Total unique manufacturers and models. This value is not the sum of A through D as some of the same component 

manufacturers are found between Portfolios. 

 

Figure 1 presents a high level summary of events across all portfolios, sorted by the greatest 

number of faults and failures to the lowest. At the inverter level, this can include faults on the 

DC side that caused the inverter to trip. 

 

 

 

Figure 1. Summary of events (faults and failures) across all portfolios 

Figure 2 presents the percentages of the different fault/failures of each component relative to the 

entire portfolio as shown in Table 2. The differences in the types of faults and failures are 

reflective of the size, age, location and type of the portfolio. Inverter faults and failures make up 

the largest share of events at three out of the four portfolios. In Portfolio B, tracker issues made 

up the largest share of faults and failures. Portfolio D has a relatively large share of grid faults, 

with most impacting just 2% of the 61 systems in the portfolio. Portfolios C and D represent 
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primarily newer systems compared to A and B. Portfolio C is primarily utility scale, with most 

systems larger than Portfolio D which is exclusively DG. 

 

 
 

Figure 2. Breakout of component failure percentages by portfolio 

As the purpose of this paper is to present reliability distributions developed from the portfolios, 

we aim first to explain how data owners can develop distributions with their own data and gain 

insight from that data. These results can then be inputs for O&M cost modeling, or inputs into 

performance models for assessing impacts based on component reliability assumptions. Future 

analysis will present a deep dive into the types of issues seen with specific components, and how 

those compare across portfolios. 
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3. RELIABILITY DATA ANALYSIS 

This section describes how to use maintenance data collected for a specific component and 

develop both time to failure and time to repair data that can then be fit to a probability 

distribution. Some of this has been adapted from Klise et al. (2017) which describes how to 

utilize reliability distributions for simulating PV performance in the SAM implementation of the 

PV-Reliability Performance Model (PV-RPM). 

 

Looking first at a specific failure, such as an inverter fan issue specific to that inverter, for 

example, will provide the most accurate data to describe that inverterôs past behavior. Lumping 

in other inverter fan issues say for the other three out of the four inverters at the same site may 

provide some similar insight into the behavior, though it may or may not be the same root cause 

issue. Taking it even further and comparing inverter fan issues across multiple sites can add even 

more uncertainty into the distributions as not every inverter may be having the same level of 

faults and failures. These differing levels of granularity can provide insight into the type of 

question being asked and help plan for different maintenance events if a component is suspected 

to have a serial failure, or poor workmanship is leading to a more isolated incident. That same 

failure may also be the result of other failures or the cause of subsequent failures. Having good 

maintenance records can help in the determination of the exact root cause. 

3.1. Time to Failure (TTF) and Time to Repair (TTR) 

To determine the best fit reliability distribution for failure and repair activities, the time to failure 

(TTF) and time to repair (TTR) for the event in consideration is calculated. The software 

described here to develop the distributions may use different conventions than other software, 

therefore results may differ if using Weibull++ vs. Minitab, for example.  

To calculate the TTF, the commissioning time for the PV inverter is subtracted from each 

downtime start as shown in Figure 3. For this example, all of the data is in days, however this 

can also be done in hours or in years, depending on the type of analysis platform the data will be 

utilized within. For the O&M cost model, reliability data must have a time unit of years. In the 

SAM PV-RPM feature, the reliability data must have a time unit of days. The distribution 

parameters cannot be converted from hours to another time unit, so itôs important to determine 

what time unit is necessary before making the calculations. In this analysis, we do not distinguish 

from repairable failures (fuses in an inverter) or non-repairable failures (module junction box 

falls off). There are many ways to evaluate the reliability state of a component, depending on the 

type of data available and the type of question being asked. 
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Figure 3. Calculation of Time to Failure using fault or failure times 

 

To calculate the TTR, the difference between each failure end time and the associated failure 

start time is calculated as shown in Figure 4.  

 

Figure 4. Calculation of Time to Repair using fault of failure times 

TTF and TTR results for a hypothetical PV system component are presented in Table 3 as an 

example of how to take raw event data and develop the correct TTF or TTR tables for 

developing probability distributions. 

 

Table 3. Example calculation of TTF and TTR 

Event 
Inverter 

Commissioning 
Date 

Downtime 
Start 

Downtime 
End 

TTF (days) = 
Downtime Start – 
Commissioning 

Date 

TTR(days) = 
Downtime End – 
Downtime Start 

Fan 
failure 

6/15/2016 0:00 
 

6/30/2016 
14:05 

7/1/2016 
23:59 

=6/30/2016 14:05 - 
6/15/2016 0:00 

= 15.586 

= 7/1/2016 23:59 - 
6/30/2016 14:05 

= 1.412 

Fan 
failure 

7/13/2016 
13:15 

7/13/2016 
15:05 

=7/13/2016 13:15 - 
6/15/2016 0:00 

= 28.552 

= 7/13/2016 15:05 - 
7/13/2016 13:15 

= 0.076 
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Fan 
failure 

7/14/2016 
12:10 

7/14/2016 
14:46 

=7/14/2016 12:10 - 
6/15/2016 0:00 

= 29.507 

=7/14/2016 14:46 - 
7/14/2016 12:10 

=0.108 

 

3.2. Creating Probability Distributions 

Once the TTF and TTR are calculated, the best fit reliability distributions can be developed. 

Probability plots are used to evaluate the fit of each distribution by estimating a cumulative 

distribution function through plotting the observation against its estimated cumulative 

probability. Using a program like Minitab, for example, the Individual Distribution Identification 

function fits the data for up to fourteen different probability distributions. To determine which 

distributions best fit the data, goodness-of-fit  statistics are then evaluated. 

The Anderson-Darling statistic (AD) tests whether the sample data comes from a given 

distribution. For a ógood fitô the AD statistic should be less than one; however, to determine if 

one distribution is a better fit than another, the AD statistic should be significantly lower than the 

other distribution. In addition to the AD statistic, the probability value, or óp-value,ô is used. For 

a given significance level Ŭ, (usually 0.05 or 0.10), a p-value Ò Ŭ indicates the data does not 

follow the distribution while a p-value > Ŭ indicates that the data has a better fit for the specified 

distribution. Generally, when comparing different distributions, the highest p-value will indicate 

the better fitting distribution. Visually one can use the probability plot to further determine if the 

distribution is a good fit by ensuring that the large majority of the points fall within the 

confidence intervals and the data follows the straight line of the plot.1  Using a combination of 

these three goodness-of-fit evaluations, the best fit probability distribution can eventually be 

determined by a process of eliminating the distributions that are not a good fit to the underlying 

data. 

 

As an example, we will consider the TTF to evaluate what failure distributions may have the best 

fit for an inverter with a faulty fan. A repair distribution will not be developed and shown here, 

though the same steps can be followed for developing a failure distribution. For this example, it 

is assumed that all of the events occurred at one site, and impacted every one of the inverters. 

Figure 5 shows the probability plots for each distribution of interest.  The AD statistic for each 

distribution is greater than one and the p-values are all smaller than 0.05, both indicating that the 

data is not necessarily a good fit any of the distributions.  

                                                 
1 http://blog.minitab.com/blog/adventures-in-statistics-2/how-to-identify-the-distribution-of-your-data-using-minitab  

http://blog.minitab.com/blog/adventures-in-statistics-2/how-to-identify-the-distribution-of-your-data-using-minitab
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Figure 5. Probability plot of TTF data  fit to exponential, gamma and Weibull distributi ons 

Notice that in each plot there appear to be three different slopes to the data. This example 

combined failures from multiple inverters at the same site. Different slopes may also be 

indicative of several effects: (1) different underlying failure modes, (2) different failure rates 

even for the same failure mode (this may in turn depend on many other external and internal 

factors), (3) different operators and/or different reporting procedures for the same failure mode, 

and a few others. While not every dataset needs to be separated by failure modes, it is important 

however to check maintenance logs of different failure events to ensure that they are cataloged 

correctly. In this case, breaking up the TTF into three separate datasets based on visually 

inspecting Figure 5 leads to results presented in Figure 6 and Table 3. 
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Figure 6. Separation of TTF data based on visual inspection of three different slopes in 

Figure 5 data, fit to exponential, gamma and Weibull  distributions  

 

Table 3. Goodness of fit results from Figure 6 

Probability Plot 1 

Distribution Exponential Weibull Gamma 

AD statistic 0.873 0.540 0.515 

p-value 0.154 0.164 0.216 

Probability Plot 2 

Distribution Exponential Weibull Gamma 

AD statistic 11.133 0.742 0.285 

p-value <0.003 0.048 >0.250 

Probability Plot 3 

Distribution Exponential Weibull Gamma 

AD statistic 2.588 0.849 0.285 

p-value <0.003 0.024 0.087 

 

In Figure 6 and Table 4, probability plot 1: The exponential distribution can be eliminated first as 

it has the highest AD statistic and lowest p-value. Comparing the Weibull and gamma 

distributions, both AD statistics are close so we rely on the larger of the two p-values to 

determine gamma as the best fit distribution. For probability plot 2, the exponential distribution 
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can again be eliminated right away as the data does not follow the cumulative distribution in the 

probability plot and does not stay within the confidence intervals. The Weibull distribution can 

also be eliminated as the p-value is lower than 0.05, leaving gamma as the best fit. Using the 

same methodology, gamma is determined to be the best fit for the third data set as well. As 

described in Appendix B, the gamma distribution is one that represents a failure where multiple 

ópartialô failures occur over time, or when infant mortality is high early for the specific 

component, then becomes lower with a more constant failure rate over time. 

Deconstructing the data allowed for a better fit of the data, indicating that the fan issues at this 

particular site follow a gamma distribution. This suggests a similar failure mode across all 

inverters at this site, though a more thorough root cause analysis would have to be completed to 

confirm this observation. 

Table 4. Gamma distribution parameters from best fit of each probability plot 

 Alpha Beta 

Probability Plot 1 2.10 34.64 

Probability Plot 2 35.76 7.75 

Probability Plot 3 5.36 153.01 

 

The distributions presented in Table 4 can then be used in the PV-RPM feature in SAM, or in the 

PV O&M Cost Model (if the time values are first translated into years prior to developing the 

distributions). 

The next section will discuss different failure modes collected by SNL and presented in 

Appendix A.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

17 

 

4. PORTFOLIO RELIABILITY DISTRIBUTIONS 

Appendix A presents summaries of reliability data collected by SNL. This section will describe 

the data in the appendix and give an example of how to interpret the data. 

4.1. Description of Data 

Components within the portfolio that have fault/failure and repair distributions include the 

following: 

¶ PV modules 

¶ DC Combiners 

¶ Inverters 

¶ AC Disconnects 

¶ Grid 

¶ Data Acquisition System 

¶ Programmable Logic Controller 

¶ Hydraulic Cylinders 

 

Currently within the dataset being curated by SNL, there are many failure modes and 

components that are not included in Appendix A as there are not enough data points to develop a 

distribution. What is presented are statistics developed where there are more than three events. 

 

Each row with reliability data information has a unique ID which encompasses the component 

type as well as the general geographic location. West, Southwest, Northeast, etc. Some qualifiers 

within the name include whether the distribution represents a specific component at that site, a 

grouping of that same component at one site, or a grouping of that same component across 

multiple sites. 

Vintage/Data Range 

This field represents the age of the site when it was commissioned (first date) and the range of 

dates where data was collected. For example, the first row of reliability data in this appendix has 

a value of 2001-2004. This data was collected from the original commissioning of the site in 

2001 up through 2004. Other rows that only show the Data Range do not have the original 

commissioning date as the distributions represent systems with different commissioning dates. 

The more common distributions that end up having the best fit for faults and failures in the SNL 

dataset include the Weibull, Gamma, Normal and Exponential. For repair events, the most 

common in the SNL dataset include Normal, Lognormal and Exponential.    

Component Size 

This lists the approximate size of the component that is described by the distribution, either in 

watts or kilowatts for inverters or modules and listed in the cell for other components. 

System Size/Site Range 

Here, the approximate size of the PV system is shown for the component in question. For larger 

portfolios, the Site Range is given. 
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Failure Distribution 

The best fit failure distribution generated using steps in Section 2 is presented here. There are 

typically two parameters that define the shape of the distribution, with the exception of 

exponential distributions, which have one parameter. The time unit is also presented, which is 

important if using data in the PV O&M Cost Model or PV-RPM in SAM. More detail describing 

in general terms the types of distributions used in fault/failure analysis is presented in Appendix 

B.  

Repair Distribution 

The repair distribution describing the probability of repairing that specific component is 

presented here. The type, along with the parameters that describe the distribution and time unit 

are also shown. These take on a different shape and distribution than the failure distribution as 

the repairs are more likely to happen soon after the fault/failure than later. Parameters for repair 

distributions may depend on a variety of internal and external factors, such as availability of 

qualified personnel, availability of parts in stock, etc. 

Failure Rate 

The failure rate is presented as number of failures in 1 Million hours. It is calculated as a 

function of the total operating hours of the component since commissioning, using a stop date of 

December 11, 2017. The convention is that the failure rate reflects a component in the constant 

failure mode phase, where infant mortality issues have been eliminated. There are only a few 

values calculated here and caution should be exercised when interpreting this data as the interval 

may not necessarily be reflective of the component having a constant failure rate. 

MTBF 

The mean time between failures represents the total time from the start of the first fault/failure 

event up through the stop date of December 11, 2017 divided by the total number of failures. As 

with interpreting the failure rate, the same caution should be applied when interpreting this value 

as it should refer to a component undergoing a constant failure rate, however the data presented 

here may not always satisfy that condition. 

Notes and References 

Footnotes are presented for the reader describing sources for some of the data, or caveats when 

considering different failure distributions. 

General Notes 

This provides more details on the type of failure or number of components used to develop the 

distribution. 

4.2. Interpretation Example 

Using data from Appendix A, we provide an example of how to interpret the failure and repair 

distribution parameters (Table 5). Three different events are shown along with system details, 

and both failure and repair distributions. 
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Table 5. Probability distribution parameters for different fault/failure events  

   Fault/Failure Distribution Repair Distribution 

Example Component 
& Location 

Failure 
Type 

Type Shape / 
Mean 

Scale / 
Stdev.  

Time 
Unit 

Type Mean Stdev.  Time 
Unit 

1 

One Inverter 
at a site in 
the Eastern 
U.S. 

Fuse 
failures 

Weibull-2 13.03 714.27 day Lognormal 0.6507 0.5431 day 

2 

One Inverter 
at a site in 
the Eastern 
U.S. 

Tripping 
and 
resetting 
due to arc 
faults 

Normal 256.979 148.56 day Lognormal -0.1181 1.3368 day 

3 
One Site in 
the Eastern 
U.S. 

Recloser 
tripping on 
grid side 

Weibull-2 1.36296 332.93 day Lognormal -1.7275 1.1695 day 

 

Example 1 

In this example, the highest probability of an inverter fuse failure peaks at just after 700 days of 

operation with a right-skewed distribution (Figure 7). 

 

There is a higher probability the fuse will be replaced between 1.5 days after failure as shown in 

this left-skewed distribution. There is only a 20% chance that the repair will happen 3 days after 

the event, suggesting these are responded to soon after the event. 

 

 

Figure 7. Failure and repair distribution example for fuse failure 

Example 2 

In this example, the arc fault events were observed to follow a normal distribution, with the 

highest probability just before 300 days of operation. These occur in the balance-of-system DC 

side, and are detected by the inverter (Figure 8). It is not known if these events are due to 

workmanship or other external factors. Different failure modes will result in different failure 

distribution shapes. 

The repair happens very quickly after the arc fault as shown by the highest probability of a repair 

event around 0.15 days, as the inverter resets (software reset) after the fault event. Arc fault 
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events that take longer to address (two days) likely require a manual reset have a 27% probability 

of happening 2 days after the event, suggesting most resets occur shortly after the event. 

 

Figure 8. Failure and repair distribution example for arc fault tripping the inverter  

Example 3 

In this example, the highest probability of a recloser tripping on the utility side of this system 

occurs around 125 days of operation, and tails off slowly as shown in this left-skewed 

distribution. As this operator has the ability to remotely re-set the recloser, the repair distribution 

shows the highest probability of repair at 0.04 days, or ~ 1 hour after the event (Figure 9). 

 

 

Figure 9. Failure and repair distribution example for utility recloser issue 
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Failure Rate 10^6 hrsMTBF (days)

PV Module Vintage/Data RangeComponent Size (W DC)System Size (MW DC)Type Shape Scale Time Unitiii Type Mean Stdev. Time Unit Notes and References General Notes

ID_TEP_module (Southwest) 2001-2004 300 3.5 Weibull-2 0.28 5.00E+12 day Lognormal-n -1.37 13.11 day i, 1,2 In reference 2, discussion on lightning as cause for some module failures.  Replacement Rate was 5 in 10,000 per year for first 5 years.

Failure Rate 10^6 hrsMTBF (days)

DC Combiner Vintage/Data RangeComponent Size DC System Size (MW DC)Type Shape Scale Time Unitiii Type Mean Stdev. Time Unit Notes and References General Notes

ID_TEP_Dccombiner (Southwest) 2001-2004 Unk. 3.5 Weibull-2 0.51 1.20E+06 day Lognormal-n -0.98 2.07 day i, 1,2,3 No discussion on what caused failure for DC combiner boxes. In Reference 2, these are referred to as "Row Boxes"

Failure Rate 10^6 hrsMTBF (days)

Inverter Vintage/Data RangeComponent Size (kW DC)System Size (MW DC)Type lambda/Shape Scale Time Unitiii Type Shape/Mean Scale/Stdev.Time Unit Notes and References General Notes

ID_TEP_Inverter_lightning (Southwest) 2001-2004 100 or 150 3.5 Exponential-1 0.00022 day Weibull-2 0.73 10.8 day ii, 1,2,3 Damage from lightning. PCU card most often replaced. Lightning arrestors added after large storms in 2003

ID_TEP_Inverter_All (Southwest) 2001-2004 100 or 150 3.5 Exponential-1 0.00278 day Lognormal-n -4.25 2.27 day i, ii, 1,2,3 Combination of all inverter faults and failures.

Vintage/Data RangeComponent Size (kW DC)System Size (MW DC)Type Shape Scale Time Unitiii Type Mean Stdev. Time Unit

ID_VS_Inverter (Southwest) 2008-2009 250 0.6 to 1.1 Weibull-2 111.0869 40655.35 hour Lognormal 1.5026 2.17808 day N/A Combination of faults that were reset, and matrix boards that were replaced

ID_utility_a_inverter_fan Data Range Component Size (kW DC)Site Range (MW DC)Type Shape Scale Time Unitiii Type Mean/lambda Stdev. Time Unit Notes and References General Notes

Specific Inverter 1 (among all sites)2013-2015 500-1500 15 to 25 Weibull-2 1.16806 607.8768 day Lognormal 1.68105 6.43975 day Fan faults/failures

Specific Inverter 2 (among all sites)2013-2015 1000-1500 2 to 60 Weibull-2 1.48506 93.68915 day Weibull-2 0.806953 2.36561 day Fan faults/failures

All Inverters at One Site (West)2013-2015 500-1500 2 to 5 Weibull-2 12.34901 273.54862 day Lognormal 3.86093 11.9357 day Fan faults/failures

Specific Inverter ID at One Site (West)2013-2015 500-1500 15 to 25 Weibull-2 5.08414 29.53872 day Lognormal 1.64102 5.84476 day Fan faults/failures

All Inverters Eastern U.S.2013-2015 500-1500 3 to 5 Weibull-2 1.96913 866.07292 day Weibull-2 0.762432 3.66232 day Fan faults/failures within 7 sites

Specific Inverter 1 (among all sites)2013-2015 500-1500 15 to 25 Weibull-2 1.16806 1.66542 year Weibull-2 3.76474 0.00034 year Fan faults/failures

Specific Inverter 2 (among all sites)2013-2015 1000-1500 2 to 60 Weibull-2 5.09336 0.07858 year Weibull-2 2.22282 0.0005 year Fan faults/failures

All Inverters at One Site (West)2013-2015 500-1500 2 to 5 Weibull-2 12.34901 0.749448 year Normal 0.000421 0.003614 year Fan faults/failures

Specific Inverter ID at One Site (West)2013-2015 500-1500 15 to 25 Weibull-2 12.42656 0.00595 year Normal 0.003363 0.003614 year Fan faults/failures

All Inverters Eastern U.S.2013-2015 500-1500 3 to 5 Weibull-2 1.96913 2.3728 year Lognormal 0.020099 0.088043 year Fan faults/failures within 7 sites

ID_utility_a_inverter_IGBT Data Range Component Size (kW DC)Site Range (MW DC)Type Shape/Alpha Scale/Beta Time Unitiii Type Shape/Mean/lambdaScale/Stdev.Time Unit Notes and References General Notes

All Inverters at One Site (East)2013-2015 500-1500 2 to 5 Weibull-2 7.16041 901.10575 day Weibull-2 2.56765 12.80014 day IGBT failures

Specific Inverter (among all sites)2013-2015 250-1000 1-25 Gamma 10.69271 71.11886 day Weibull-2 2.55113 12.61116 day IGBT failures, 9 sites

All Inverters Eastern U.S.2013-2015 500-1500 2-10 Weibull-2 1.47374 799.39363 day Exponential-1 9.49382 N/A day IGBT failures, 5 sites

All Inverters Western U.S.2013-2015 500-2000 2-35 Weibull-2 1.351 589.60393 day Weibull-2 1.43987 9.73814 day IGBT failures, 8 sites

All Inverters at One Site (East)2013-2015 500-1500 2 to 5 Weibull-2 23.67141 0.09703 year Weibull-2 2.56765 0.03507 year IGBT failures   

Specific Inverter (among all sites)2013-2015 250-1000 1-25 Gamma 10.69271 0.19485 year Weibull-2 2.55113 0.03455 year IGBT failures, 9 sites

All Inverters Eastern U.S.2013-2015 500-1500 2-10 Weibull-2 1.4374 2.19012 year Weibull-2 1.26342 0.02792 year IGBT failures, 5 sites

All Inverters Western U.S.2013-2015 500-2000 2-35 Weibull-2 1.351 1.61535 year Normal 0.024561 0.015101 year IGBT failures, 8 sites

ID_utility_a_inverter_cooling Data Range Component Size (kW DC)Site Range (MW DC)Type Shape/Alpha Scale/Beta Time Unitiii Type Mean/Shape Stdev./ScaleTime Unit Notes and References General Notes

All Inverters at One Site (West)2013-2015 500-1500 15 to 30 Weibull-2 7.37307 376.81404 day Lognormal 3.4111 11.6452 day Cooling issues

Specific Inverter (among all sites)2013-2015 500-2000 2 to 50 Weibull-2 2.04092 395.13783 day Lognormal 1.91479 4.47639 day Cooling issues, 8 sites

Specific Inverter (among all sites)2013-2015 250-1000 2 to 25 Weibull-2 0.78454 354.46402 day Weibull-2 0.83494 1.71179 day Cooling issues, 4 sites

All Inverters Eastern U.S.2013-2015 500-1500 2 to 10 Weibull-2 0.92279 1.797 day Weibull-2 5.67827 518.54123 day Cooling issues, 3 sites

All Inverters Western U.S.2013-2015 500-2000 2 to 50 Gamma 2.33176 127.92907 day Weibull-2 0.5935 0.73041 day Cooling issues, 12 sites

All Inverters at One Site (West)2013-2015 500-1500 15 to 30 Weibull-2 6.00263 1.10193 year Weibull-2 0.76662 0.00441 year Cooling issues

Specific Inverter (among all sites)2013-2015 500-2000 2 to 50 Weibull-2 2.0925 1.09703 year Weibull-2 0.80727 0.00407 year Cooling issues, 8 sites

Specific Inverter (among all sites)2013-2015 250-1000 2 to 25 Weibull-2 0.78454 0.97113 year Weibull-2 0.90135 0.00579 year Cooling issues, 4 sites

All Inverters Eastern U.S.2013-2015 500-1500 2 to 10 Weibull-2 5.91295 0.21954 year Weibull-2 0.92279 0.00492 year Cooling issues, 3 sites

All Inverters Western U.S.2013-2015 500-2000 2 to 50 Gamma 2026694 0.36088 year Weibull-2 0.60181 0.00205 year Cooling issues, 12 sites

ID_utility_a_inverter_cycling Data Range Component Size (kW DC)Site Range (MW DC)Type Lambda/ShapeScale Time Unitiii Type Mean/Shape Stdev./ScaleTime Unit Notes and References General Notes

All Inverters at One Site (West)2013-2015 1000-1500 10 to 15 Exponential-1 83.066 day Lognormal 0.241061 0.0496306 day Power cycling

All Inverters at One Site (West)2013-2015 1000-1500 15 to 25 Weibull-2 4.10774 353.63 day Lognormal 5.15977 30.0369 day Power cycling

Specific Inverter (among all sites)2013-2015 1000-1500 2 to 25 Weibull-2 3.09197 418.13464 day Lognormal 4.73865 4.41415 day Power cycling, 11 sites

All Inverters Eastern U.S.2013-2015 1000-1500 2 to 10 Weibull-2 5.67827 518.54123 day Weibull-2 0.89665 2.48832 day Power cycling, 4 sites

All Inverters Western U.S.2013-2015 1000-1500 3 to 25 Weibull-2 1.70403 294.05056 day Weibull-2 2.12009 0.23041 day Power cycling, 7 sites

All Inverters at One Site (West)2013-2015 1000-1500 10 to 15 Weibull-2 1.37223 0.35031 year Weibull-2 0.000649 0.000145 year Power cycling

All Inverters at One Site (West)2013-2015 1000-1500 15 to 25 Weibull-2 4.10774 0.96886 year Lognormal 0.014136 0.082293 year Power cycling

Specific Inverter (among all sites)2013-2015 1000-1500 2 to 25 Weibull-2 3.09197 1.14557 year Weibull-2 2.29627 0.00069 year Power cycling, 11 sites

All Inverters Eastern U.S.2013-2015 1000-1500 2 to 10 Weibull-2 19.30408 0.06803 year Weibull-2 0.89665 0.00682 year Power cycling, 4 sites

All Inverters Western U.S.2013-2015 1000-1500 3 to 25 Weibull-2 2.06976 0.34899 year Weibull-2 2.12 0.00063 year Power cycling, 7 sites

ID_utility_a_inverter_grid Data Range Component Size (kW DC)Site Range (MW DC)Type Shape Scale Time Unitiii Type Shape Scale Time Unit Notes and References General Notes

Specific Site Specific Inverter Western U.S.2013-2015 500-2000 2 to 50 Weibull-2 1.20783 515.783 day Weibull-2 0.62678 1.61112 day

ID_utility_a_inverter_PM Data Range Component Size (kW DC)Site Range (MW DC)Type Shape Scale Time Unitiii Type Shape/Mean Scale/Stdev.Time Unit Notes and References General Notes

Specific Site Specific Inverter Western U.S.2013-2015 500 - 1500  5-15 Weibull-2 107.704 516.797 day Weibull-2 3.25542 0.06094 day Preventative Maintenance

Specific Site Specific Inverter Western U.S.2013-2015 1000 - 1500  10-15 Weibull-2 11385.4 340.579 day Normal 0.03559 0.007908 day

ID_DG_a_inverter_fuse_hardware Vintage/Data RangeComponent Size (kW DC)Site Range (kW DC) Type Mean/Shape Stdev./ScaleTime Unitiii Type Mean/Lambda Stdev. Time Unit Notes and References General Notes

Specific Inverter Entire Portfolio Eastern U.S.2011-2017 50 - 150 105-450 Lognormal 7.38327 0.16971 day Lognormal 0.30378 0.82292 day iii Fuse faults

Specific Inverter Entire Portfolio Eastern U.S.2014-2017 50 - 150 105-450 Normal 498.23 277.15 day Lognormal 0.30378 0.82292 day iii, iv fuse and hardware faults

Specific Inverter(s) at One Site Eastern U.S.2014-2017 50 - 150 200 Weibull-2 13.03 714.27 day Lognormal 0.65067 0.54308 day 68.45 147.16 iii, iv fuse faults

Specific Inverter(s) at One Site Eastern U.S.2014-2017 50 - 150 350 Normal 510.72 325.8 day Lognormal 0.25971 1.14308 day 68.45 62.75 iii, iv fuse and amperage faults

Specific Inverter(s) at One Site Eastern U.S.2014-2017 50 - 150 450 Lognormal 6.11 0.65 day Lognormal 0.41589 0.37965 day 51.33 44.10 iii, iv fuse and hardware faults

Specific Inverter(s) at One Site Eastern U.S.2014-2017 50 - 150 105 Normal 400.55 21.66 day Exponential-1 1.75 day 102.67 294.92 iii, iv Fuse and hardware faults

ID_DG_a_inverter_ground_arc_fault Vintage/Data RangeComponent Size (kW DC)Site Range (kW DC) Type Mean/LocationStdev./ScaleTime Unitiii Type Location Scale Time Unit Notes and References General Notes

Inverter A Eastern U.S.2014-2017 20 175 Normal 343.30 86.12971 day Lognormal -0.21526 1.65686 day 228.10 110.83 arc fault somewhere on DC side

Inverter B Eastern U.S.2014-2017 20 175 Normal 256.97917 148.56025 day Lognormal -0.11811 1.33676 day 114.05 191.11 arc fault somewhere on DC side

Inverter C Eastern U.S.2014-2017 20 175 Normal 323.42188 104.96245 day Lognormal -0.41328 1.64365 day 228.10 93.00 arc fault somewhere on DC side

Inverter D Eastern U.S.2014-2017 20 175 Lognormal 5.90963 0.44702 day Lognormal -0.04817 1.49318 day 228.10 85.83 arc fault somewhere on DC side

Failure Distribution Repair Distribution

Failure Distribution Repair Distribution

Failure Distribution Repair Distribution



 

26 

 

 

 

 

Failure Rate 10^6 hrsMTBF (days)

AC Disconnect Vintage/Data RangeComponent Size System Size (MW DC)Type Shape Scale Time Unitiii Type Shape Scale Time Unit Notes and References General Notes

ID_TEP_ACdisconnect (Southwest) 2001-2004 480 V 3.5 Weibull-2 0.35 11000 day Weibull-2 0.71 1.4 day ii, 1,2,3 high contact resistance due to grease attracting dust

Failure Rate 10^6 hrsMTBF (days)

HV Transformer Vintage/Data RangeComponent Size System Size (MW DC)Type Shape Scale Time Unitiii Type Shape Scale Time Unit Notes and References General Notes

ID_TEP_HV_Transformer (Southwest) 2001-2004 480/34.5 kV 3.5 Weibull-2 0.58 7100 day Weibull-2 0.53 1.36 day ii, 1,2,3

Failure Rate 10^6 hrsMTBF (days)

Grid Vintage/Data RangeComponent Size System Size (MW DC)Type Mean Stdev. Time Unitiii Type Shape Scale Time Unit Notes and References General Notes

ID_TEP_Grid (Southwest) 2001-2004 N/A 3.5 Lognormal-n 3.62 1.7 day Weibull-2 1.07 0.16 day i, ii, 1,2,3

ID_DG_a_recloser_trip_grid Vintage/Data RangeComponent Size System Size (MW DC) Type Shape Scale Time Unitiii Type Mean Stdev. Time Unit Notes and References General Notes

One Site Eastern U.S.2015-2017 N/A 2.0 Weibull-2 1.36296 332.93 day Lognormal -1.72747 1.16951 day 1134.89 34.56 i, iii On utility side

Failure Rate 10^6 hrsMTBF (days)

Data Acquisition System Vintage Component Size System Size (MW DC)Type Shape Scale Time Unitiii Type Mean Stedv. Time Unit Notes and References General Notes

ID_VS_DAS (Southwest) 2008-2009 N/A 0.6 to 1.1 Weibull-2 8.34817 40223.13 hour Normal 3.24208 106.529 hour power supply issue

Failure Rate 10^6 hrsMTBF (days)

Programmable Logic Controller Vintage Component Size System Size (MW DC)Type Shape Scale Time Unitiii Type Shape Scale Time Unit Notes and References General Notes

ID_VS_PLC_CYL (Southwest) 2008-2009 N/A 0.6 to 1.1 Weibull-2 12.30621 30338.73 hour Weibull-2 0.47499 30.1237 hour PLC for hydraulic cylinder operation

Failure Rate 10^6 hrsMTBF (days)

Hydraulic Cylinders Vintage Component Size System Size (MW DC)Type Mean Stdev. Time Unitiii Type Shape Scale Time Unit Notes and References General Notes

ID_VS_CYL (Southwest) 2008-2009 N/A 0.6 to 1.1 Normal 38687.03 3280.432 hour hour

Failure Distribution Repair Distribution

Failure Distribution Repair Distribution

Failure Distribution Repair Distribution

Failure Distribution Repair Distribution

Failure Distribution Repair Distribution

Failure Distribution Repair Distribution
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APPENDIX B:  PROBABILITY DISTRIBUTIONS USED TO DEVELOP FAULT AND 
FAILURE DISTRIBUTIONS 
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1. UNIFORM 

The uniform distribution is one that would likely not be utilized for reliability analysis of 

photovoltaic systems as it has a constant probability where there is an equal likelihood that an 

event would occur over the entire distribution. Figure A-1 below shows a pdf of a uniform 

distribution with a minimum value of 2 and a maximum value of 6. 

 
Figure A-1. Uniform Distribution 

 

2. NORMAL 

A normal (Gaussian) distribution is typically represented by the classic bell shaped curve, where 

the mean (mu or µ) is the location where the apex of the pdf occurs and the standard deviation 

(sigma or ů) defines the height of the distribution, where 68% of the data that is sampled from 

the distribution will be found (Figure A-2). 

 

Normal distributions are used when a component is expected, or known to have an increasing 

failure rate over time followed by a reduced failure rate later in life, for a mechanical system 

where there is external stress that creates a wearout effect, and for failures as a result of chemical 

processes that can result in corrosion, for example (Pham, 2006).2 A concern about using a 

normal distribution for reliability analysis is that if the standard deviation is too large, then 

negative time values may result. If the standard deviation is small, this can prevent that behavior.
3

 

                                                 
2 Pham, H., (2006), ñSystem Software Reliability,ò Chapter 2 ï System Reliability Concepts. Springer, 440 p. 
3 http://reliawiki.org/index.php/The_Normal_Distribution  

http://reliawiki.org/index.php/The_Normal_Distribution
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Figure A-2. Normal Distribution 

 

Figure A-3 shows what happens when the mean is held constant but the standard deviation 

increases. The distribution peak moves down as the first standard deviation spreads out further to 

the left and right. The left tail of the flatter normal distribution shows where negative time values 

may result. 

 
Figure A-3. Normal Distribution: Change in Standard Deviation 

3. LOGNORMAL 

The lognormal distribution is useful for approximating component behavior due to fatigue 

related stress. This type of distribution is also good for modeling repairable systems, which can 
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lead to time to repair (TTR) estimates and repair distributions using maintainability data. When 

the data is positively skewed, it is possible to take the log of the data to approximate a normal 

distribution. 

 

When using the PV-RPM feature in SAM, the SNL LHS function as implemented in SAM 

requires mean and error factor inputs into the lognormal function. The Lognormal-n function 

requires the mean and standard deviation of the UNDERLYING normal distribution. However, 

we anticipate that most users will have the mean and standard deviation of the actual lognormal 

distribution. Therefore, the LHS function implemented in the PV-RPM script translates from 

input mean and standard deviation to the error factor before calling the lognormal LHS function. 

The translation equations used can be found at https://dakota.sandia.gov/content/latest-reference-

manual, Keywords>Variables>lognormal_uncertain. Depending on the software used to develop 

the distribution, some lognormal inputs may have a negative value for the mean. The use of 

lognormal-n allows a negative mean value to be processed. 

 

The parameters used for a lognormal distribution are the mean (mu or µ) and standard deviation 

(sigma or ů). Figure A-4 provides four different plots of the lognormal distribution to show how 

changing the mean and standard deviation impacts the spread and skewness of the pdf. In this 

case, the solid line plots have the same mean, and increasing the standard deviation from 0.5 to 1 

results in a shorter peak that then shifts left on the x-axis becoming more right skewed. When the 

standard deviation is held constant as shown with the dotted lines, the distribution flattens out 

more as the mean increases, becoming less right skewed. 

 

Considering a failure event that could be expressed by this distribution, there is an increased 

likelihood that the event will happen early on during the component lifetime, though over time, 

the probability that it will happen starts decreasing, either sharply, or more gradually. Using this 

as a repair distribution, there is a high likelihood that the failure will be fixed soon after the event 

rather than much later, such as nuisance tripping events for an inverter. 

 

Much of what can be represented by a lognormal distribution can also be approximated with a 

Weibull distribution. 
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Figure A-4. Lognormal Distribution: Change in Mean and Standard Deviation  

4. TRIANGULAR 

This type of distribution is used when the componentôs behavior may be known, but there isnôt a 

large enough dataset to develop a representative distribution. This allows the user the ability to 

define a minimum, maximum and most probable value. The triangle can be symmetric, or 

skewed either left or right. If using the PV-RPM feature in SAM, the implementation asks for 

variables A, B and C in order of input into the function. A is the minimum x value where y = 0. 

B is the ómodeô or peak of the triangle. C is the maximum x value where y = 0. 

 

The example below shows a non-symmetrical triangle, with a minimum time of 0 and maximum 

of 6, with the highest probability of an event at time 2.  

 

 
Figure A-5. Triangular Distribution 
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5. GAMMA 

A gamma distribution is one that can be used to represent a failure event where multiple ópartialô 

failures occur over time, resulting in complete failure of the component. It can also describe 

infant mortality failures that occur on the left hand side of the óbathtub curveô. It is not however a 

common distribution used for ócommon failure mechanism.4

  

However, in our analysis presented in Section 3, the gamma distribution is the best fit for the 

data. 

 

Alpha and Beta parameters are used in the Gamma distribution. Examples of holding the alpha 

constant and beta constant are presented in Figure A-6. When holding the alpha constant, an 

increasing beta lowers the peak and shifts it to the right. When holding beta constant, increasing 

alpha also lowers the peak and shifts it to the right. 

 

 
Figure A-6. Gamma Distribution: Change in Alpha and Beta 

6. POISSON 

A Poisson distribution is typically used in reliability settings to represent discrete events with a 

constant failure rate over a given time interval. This distribution is essentially a binomial 

distribution when there are low occurrence probabilities. Lightning events impacting a PV 

system can be modeled using a Poisson distribution. Spare parts analysis can also be done using 

a Poisson distribution, if a constant failure rate is already known.5 

 

The symbol used in the Poisson distribution is Lambda (Shape parameter) which can be thought 

of the expected or average number of events. Increasing Lambda from 0 results in a shift of the 

distribution to the right, and a lowering of the peak value. 

                                                 
4 http://reliawiki.org/index.php/The_Gamma_Distribution 
5 https://src.alionscience.com/pdf/POIS_APP.pdf  

https://src.alionscience.com/pdf/POIS_APP.pdf
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Figure A-7. Poisson Distribution: Change in Lambda 

 

7. BINOMIAL 

Like Poisson, integer values are used as random numbers. However, binomial distributions are 

typically used in experiments where there is a ñpassò or ñfailò criterial. These will likely not be 

used in a system-level analysis of a PV plant and are more appropriate to use say in a 

manufacturing setting when analyzing defective parts used to build a specific component. 

8. EXPONENTIAL 

An exponential distribution is used for components that have a constant failure rate. Electronic 

equipment is one area that can be modeled using an exponential distribution. For solar, inverters 

may have failure modes that follow an exponential distribution.  

 

In this case, we are only considering a one-parameter exponential distribution. As Lambda 

increases, the distribution moves left and the peak increases (Figure A-8). The inverse of 

Lambda is the componentôs mean time between failure. However, that is only true if the 

component has a constant failure rate (it cannot be decreasing or increasing over time). 

An exponential distribution is also the same as a Weibull distribution when the Beta/slope 

(shape) is equal to 1, meaning there is a constant failure rate. 
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Figure A-8. Exponential Distribution: Change in Lambda 

9. WEIBULL 

Weibull distributions are the most versatile of all probability distributions and can be used in 

place of many of the other distributions presented in this appendix as it can handle constant and 

non-constant (decreasing or increasing) failure rates. It can be used to model component fatigue, 

corrosion, diffusion, abrasion and other degradation processes.  

 

The Weibull distribution is changed primarily through the shape (slope) and scale (spread) 

parameters.  There are many different parameter labels used in software programs. Therefore, 

remembering the shape and the scale will translate across different greek symbols used by 

different authors. The most important aspects of the Weibull distribution are as follows: 

  

¶ A shape parameter less than 1 means that there is a decreasing failure rate for that 

component. 

o This can indicate the infant mortality phase where most of the failures have 

already occurred and become less frequent over time. 

¶ A shape parameter equal to one means the component has a constant failure rate.  

¶ A shape parameter greater than 1 means there is an increasing failure rate. 

o As the component ages, the failure rate may start increasing as it reaches the end 

of its life. 

¶ The scale parameter helps define the spread of the data and is the 63.2 percentile of the 

failure data.  

o For the first plot in blue (Shape = 0.5, Scale = 5), (Figure A-9) the scale of 5 

would mean that 63.2 percent of the component would fail in the first 2 years 

(years on x-axis). 
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Figure A-9. Weibull Distribution: Change in Shape and Scale 

 

The quintessential bathtub curve that is shown in many discussions of reliability engineering can 

be constructed from three different Weibull distributions.6 If, for example, you want to simulate 

an inverter failure and have some knowledge that the inverter has not yet been extensively field 

tested. Figure A-10 shows three different distributions that can be used to simulate either general 

inverter failures, or can be used to isolate a specific component.  

 

Specific repair distributions can also be defined for each failure mode, with parameters chosen to 

replicate how fast the repair will be addressed depending on the severity of the modeled 

component, or stage in the component lifetime. 

 

As Weibull distributions are like others presented here, being able to compare different 

distributions may be of interest. A good way to make this comparison is available in this on-line 

calculator.7 

                                                 
6 http://www.weibull.com/hotwire/issue14/relbasics14.htm  
7 http://biodevices.et.tudelft.nl/ReliabilityEngineering/Distributions/Compare/   

http://www.weibull.com/hotwire/issue14/relbasics14.htm
http://biodevices.et.tudelft.nl/ReliabilityEngineering/Distributions/Compare/
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Figure A-10. Three distributions used to develop bathtub curve in a probability plot 
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