SunSpec System Validation Platform
SunSpec Alliance Users Guide

Version 1.0

SUNSPEC

— ALLIANCE —

ABSTRACT

This document provides an overview of the SunSpec System Validation Platform
and information on how to use the tools for running test scripts.

About the SunSpec Alliance

The SunSpec Alliance is a trade alliance of developers, manufacturers, operators and service
providers, together pursuing open information standards for the distributed energy industry.
SunSpec standards address most operational aspects of PV, storage and other distributed energy
power plants on the smart grid—including residential, commercial, and utility-scale systems—thus
reducing cost, promoting innovation, and accelerating industry growth.

Over 70 organizations are members of the SunSpec Alliance, including global leaders from Asia,
Europe, and North America. Membership is open to corporations, non-profits, and individuals. For
more information about the SunSpec Alliance, or to download SunSpec specifications at no charge,
please visit www.sunspec.org.

Change History

1.0: Initial version

Copyright © SunSpec Alliance 2011 - 2015. All Rights Reserved.

This document and the information contained herein is provided on an "AS IS" basis and the
SunSpec Alliance DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE.

This document may be used, copied, and furnished to others, without restrictions of any kind,
provided that this document itself may not be modified in anyway, except as needed by the SunSpec
Technical Committee and as governed by the SunSpec IPR Policy. The complete policy of the SunSpec
Alliance can be found at www.sunspec.org.

SunSpec System Validation Platform- Version 1.0

SunSpec System Validation Platform- Version 1.0

Table of Contents

Chapter 1 SunSpec System Validation Platformcccceeeeeieiiiiiiiiiiiiiiicieeeeenn, 6
Tl dgeTe [¥T01 4 Te] o HUU O T O S ST U TP P PR UPRTOPRR 6
OVEBIVIBW .eiiiiiiiii ittt ettt e et e e e s e s s e e et e e e e s e s s s bbb et e eeeeeesssesaannnne 6

SunSpec Protocol Conformance TESTINGuuviiiiii i ee ettt e et e e e e e e et ar e e e e e e s e eaarraeeeaeeean 6
EqQUIPMENT FUNCHIONAI TESTING...iii it et e e e e e et e e e e e e e e aaraaeeeeeeeesnnnreees 6
SUNSPEC SVP APPIOACK cooeiiiiie ittt e e et e e e st e e e e sbtaeeessbbaeeessnbeeeessanseeeeesanns 7
Script Management, Execution, and REPOITING ...cccocuuiiiiiiii ittt raee e e 7
ROIES ettt ettt b e st sa et s bt e e bt e b et e b et e eh et e bt e e sa b e e ea bt e sbee s be e e bt e e baeenneeeas 7
1] o] Tl e Yol =To [V T | WY Y g1 o] PP 8
0] o] oXoT gl M1 o =Y =TSP TS PP 9

Chapter 2 Installing SUNSPEC SVP.....eeeeeeiei e 10
INSTAllING the SOTEWAIEeiiii it e e e s e e e e s bee e e s enanreas 10
U] o L=To) VA S U T o To £ = PSP 10

Chapter 3 Using SUNSPEC SVPcoiiiiiiiiiiiiiiinii e, 11
SUNSPEC SVP DIFCEOIY .ttt e teteeeeebe s es e e e e e e e eaeeens 11
SunSpec SVP Terminology and FUNCHIONccuiiiiiiciiiie ettt e e s sereee s 12

I Y ol o X TSP UU PRSPPI 12
L= PP PPPPPPPPP 13
R PP OPPRP PP 13
SUNSPEC SVP Dir€CEONY STIUCTUIE ettt 14
SUNSPEC SVP INTEITACE weiiiiiiiiie ettt e st e e e ssaab e e e e ssnbaeeessnnraeeean 14
R Y ol o1 3 OSSP UUUPPPPPP 14
L] OO PPPPPPPPP 16
U ettt e et e e s b e et ettt r e e e e e ae e e e ba e e s s rae e e s s raeeeeans 19
RESUIES .ttt sttt ettt e sa b e e bt e s bt e e a bt e e bt e e b et e bt e e bt e e e ab e e sabe e e nee s beeeneeenee 21
SUNSPEC SVP EXECULION INTEITACE. .. iiiiiiiiiiie ittt e e e e e s aaeee s 22
Progress INTOIMATION.ccoi ittt e e e e et e et e e e e e e st ba e e e e e e e e seatasbeeeeaeeeesnnraaseeaeeeananses 22
(oY= [0} o] ¢ s T | £ To] s PP PUPUPPRRRR 22
Status and EXECULION CONTIOL ...ccouuiiiiiieiie ittt e e e s e sneeeas 22

Chapter 4 Creating SCriPts coooii i e e 24

SCIIPT SEIUCTUIE ... e e e e e e e e e e e e e e et e e e e et e et ee e e bt st e be b ab s e e e e e e eeeeans 24
Y g1 o] 4 1) (o U PUUPRO 25
R Y ol o X TS USSP UUPPPPPP 27

SunSpec System Validation Platform- Version 1.0

SunSpec System Validation Platform- Version 1.0

Chapter 1
SunSpec System Validation Platform

Introduction
This document describes the concepts and operational details of the SunSpec
System Validation Platform (SVP).

Overview

The objective of the SunSpec SVP is to provide a framework for testing and
validating SunSpec compliant devices. Two principal types of testing have been
targeted: SunSpec protocol conformance testing, and Equipment functional testing.

SunSpec Protocol Conformance Testing

SunSpec protocol conformance tests evaluate the correctness of the implementation
of SunSpec information models used by the device. These tests verify that the device
can provide and accept data point values as specified in the relevant SunSpec
specifications. No functional results of the specific data point settings are evaluated.

Equipment Functional Testing

Equipment functional testing consists of verifying the behavior of the device with
specified settings under specific electrical conditions. These tests are comprised of
test cases specified in test protocol documents such as the Sandia Inverter Test
Protocols! and UL 1741 Supplement A.

One of the major objectives of the SunSpec SVP for equipment functional testing is
automation of the test cases. Due to the permutations created by multiple device
settings under multiple electrical conditions, it is impractical to run a
comprehensive set of tests without a high level of automation.

A common use case for device functional testing is inverter control functionality.
Functional testing for a device implementing inverter control functionality would
typically have the following components, shown in Figure 1: equipment under test,
grid simulation, PV simulation, data acquisition, and post-test analysis.

1]. Johnson S. Gonzalez, M.E. Ralph, A. Ellis, and R. Broderick, “Test Protocols for Advanced Inverter
Interoperability Functions - Main Document,” Sandia Technical Report SAND2013- 9880, Nov 2013.
J. Johnson S. Gonzalez, M.E. Ralph, A. Ellis, and R. Broderick, “Test Protocols for Advanced Inverter
Interoperability Functions-Appendices,” Sandia Technical Report SAND2013-9875, Nov 2013.

SunSpec System Validation Platform- Version 1.0

SunSpec SVP

Communications Communications Communications

Grid Power Power

. Equipment PV Simulator
Simulator nder Tes

AC and DC Measurements

Data Acquisition System

Figure 1: Example SunSpec SVP implementation for a Distributed Energy Resource EUT.

SunSpec SVP Approach

The general approach in the SunSpec SVP is to provide an environment that can
manage and execute test scripts that utilize libraries that provide access to all the
necessary components in the system. This approach allows for the same test logic to
be applied in testing scenarios that may be using different physical components to
implement any particular functional block in the test system.

Both the test scripts and support libraries are implemented in Python. Python is a
rich language that lends itself to both procedural and object oriented styles of
programming.

Script Management, Execution, and Reporting
SunSpec SVP provides management, execution, and report capabilities for the test
scripts.

Roles

The following roles are identified in using the system: script runner, script
creator/updater, and library creator. A graphical representation of the roles is
shown in Figure 2.

Script Runner

The script runner does not require any proficiency in python. The SVP graphical
user interface (GUI) can be used to start and stop scripts, set parameters for running
scripts, and collect results.

Script Creator/Updater

The script creator requires basic Python proficiency. Scripts and tests can be
defined and built using the modules available in the SVP library. The script creator
would need to have knowledge of how to interpret the test results for measuring
device conformance and compliance.

SunSpec System Validation Platform- Version 1.0

Library Creator

More advanced Python proficiency is usually required to create and modify support
libraries. Objects in this context are sets of functions that can possibly be reused in
different scripts.

Role Domains

Script Runner

Script Creator/Updater

Library Creator
Grid .
Simulator Sin?ﬁgtor Grid
Abstraction . . |=—»| Simulator
— . Library (in
Layer (in Lib file) Hardware
Lib file)
| DER : DER
Lo Library Equipment
i Abstraction (Driver) Under T
SunSpec == Layer (to be ! e > ?E%T)eSt
SVP added) SunSpec
Graphical Python i . Core
User Scripts o
Interface
Front End . 12 PV
Simulator Simulator PV
=== Abstraction Li . |===p{ Simulator
. ibrary (in
Layer (in Lib file) Hardware
Lib file)
DAS D?t?. Data
Abstraction Acquisition Acquisition
=P Laver (i System
yer (in ; . f—p System
Lib file) Dibraryi(in (DAS)
Lib file)

Figure 2: Domains of the SVP roles and overview of possible support libraries.

Simple Procedural Test Scripts

A key objective of the system is to keep the logic in the test scripts as simple as
possible. Ideally, test script should be written in a procedural style with the logic
being tied as directly as possible to the test protocol documentation.

SunSpec System Validation Platform- Version 1.0

This allows scripts to be created, updated, and understood by a larger group of users
of the system.

Higher complexity interactions with system components should be built into to
support libraries.

Support Libraries

Support libraries provide blocks of functionality required in the system. In general,
support libraries would be written in a modular, object-oriented style providing
objects with rich functionality to be used by test scripts.

Python

The Python language was chosen for its robustness, ease of use, and multi-platform
support. Currently the SunSpec SVP is only supported on Windows 7, but support is
planned for MacOS and Linux.

The Windows SunSpec SVP installation executable contains a full Python
distribution so it is not necessary to have Python installed in the system to use the
SVP or even create and run new Python scripts within the SVP environment.

Python is an easy to learn, powerful programming language. It has efficient high-
level data structures and a simple but effective approach to object-oriented
programming. Python’s elegant syntax and dynamic typing, together with its
interpreted nature, make it an ideal language for scripting and testing.

The Python interpreter and the extensive standard library are freely available in
source or binary form for all major platforms from the Python Web

site, https://www.python.org/, and may be freely distributed. The same site also
contains distributions of and pointers to many free third party Python modules,
programs and tools, and additional documentation.

SunSpec System Validation Platform- Version 1.0

Chapter 2
Installing SunSpec SVP

The SunSpec System Validation Platform is distributed as a single Windows setup
executable. The SunSpec SVP installation Windows executable is self-contained and
does not require Python to be installed on the system.

Installing the Software

The SunSpec System Validation Platform software is available as a setup .exe file
from the SunSpec website, http://www.sunspec.org. Run the executable to unpack
and install the software.

SunSpec SVP Updates

New versions install over old versions without loss of saved context information.

SunSpec System Validation Platform- Version 1.0

10

Chapter 3
Using SunSpec SVP

The SunSpec System Validation Platform provides a GUI interface for managing and
running SunSpec SVP based test functionality. The main SVP interface consists of an
SVP directory navigation window on the left and an information window on the
right.

Below is the main SVP interface without any SVP directories loaded:

TTTTT—
|ﬁe Edit

I Navigation Window Information Window

A

SunSpec SVP Directory

The SunSpec SVP application allows a user to load and run test functionality
bundled as an SVP directory. The SVP application can have multiple SVP directories
available for use simultaneously.

An SVP directory is a normal file system directory that conforms to a specific
structure. An SVP directory contains at least the following sub-directories: Lib,
Results, Scripts, Suites, and Tests.

SunSpec System Validation Platform- Version 1.0

11

4 Sandia Inverter Test Protocol
Lib
Results
Scripts
Suites
Tests

Each of these sub-directories contains the components associated with an SVP
functional test instance described below. All the contents of the SVP Directory are
referenced relative to the directory location in the system. This allows SVP
Directories to be published and easily passed between SVP instances running on
different systems.

To load an SVP directory into SVP, use File->Add SVP Directory.

Once the directory is loaded in SVP, all interaction with the directory elements
should be performed through SVP and usually the directory elements should not be
modified outside of SVP.

SVP directory after loading:

—
) SunSpec System Validation Platform =nhey X)
- _—
File Edit Help
7 ..\Sandia Inverter Test Protocol
» B Suites
b S Tests
» 'S Scripts
4 ljl Results
»

SVP remembers the directories that are loaded in the application when SVP is
restarted.

To remove an SVP directory, select the directory and use either Edit->Remove in
the main menu or right click to bring up a context menu with the Remove option.
The directory reference is removed from SVP but the directory contents are left
unchanged in the file system. An SVP directory can be re-added at any time.

SunSpec SVP Terminology and Function

The SunSpec SVP platform is built around three main elements: Scripts, Tests, and
Suites. Each element performs a specific function.

Script
The script element has two main attributes: functional logic and an input parameter
set.

SunSpec System Validation Platform- Version 1.0

Functional Logic

A script is written in Python and provides the functional decision making associated
with a specific test scenario. An SVP script uses both general purpose and task
specific Python libraries to accomplish its task. The SVP platform itself also supplies
several Python objects that allow the script to use the resources provided by the
platform.

Input Parameter Set

The SunSpec SVP provides a standard mechanism for scripts to define a set of input
parameters to be used by a script. This mechanism allows scripts to be written for a
particular testing scenario that may want to apply the same test logic to a number of
different parameter sets. By using the standard SVP parameter definition technique,
individual parameter sets can be created though the SVP interface. A single set of
parameter values associated with a script is called a Test.

Test
A Test is a single set of parameter values associated with a Script. Tests can be
created based on any Script in the Scripts directory.

Once a Test is created, it can be run in the SVP environment either individually or
grouped with other Tests in a specific sequence.

A group of Tests is called a Suite. Suites specify the execution order of a set of Tests
or other Suites and allow for global script parameters to be set at the Suite level.

Suite
A Suite specifies the execution order of a group of Tests or other Suites and also
provides the ability to set global parameter values.

Test and Suite Execution Order
Suites may contain both Tests and Suites in any order. Suites may not contain other
Suites that would create a circular reference.

Set Global Parameters

Script input parameters that are defined as global in the parameter definition in the
Script can be set at the Suite level. This allows Tests to be reused and the
environment specific parameter settings to be applied at the top level Suite rather
than in all the Suites and Tests contained in the Suite.

When a test or suite is referenced in a suite, it is treated as a pointer to the suite or
test being referenced and is not a copy. Any change to a suite or test is reflected in
any suite that is referencing that suite or test.

SunSpec System Validation Platform- Version 1.0

13

SunSpec SVP Directory Structure
An SVP directory contains at least the following sub-directories: Lib, Results,
Scripts, Suites, and Tests.

The Scripts, Suites, and Tests directories contain the scripts, suites, and tests for
the functionality contained in the SVP directory.

The Results directory contains the results log of all test or suites that are run.

The Lib directory is not shown in the SVP directory visualization and contains
additional Python files that are used by the scripts in the SVP directory. In general
these additional python files will be abstraction layers and Python libraries for
specific hardware.

SunSpec SVP Interface

All actions are performed on SunSpec SVP components using the menus in the menu
bar or through a context menu invoked by a right click. Almost all operations are
available in both the main menu and context menu. The available operations change
based on the item currently selected.

In general, all actions on SVP components should be performed through the SVP
interface. Altering the SVP components directly in the file system could create
inconsistencies that would prevent SVP from managing them properly.

Scripts

Scripts are Python programs that are created in accordance with the SVP structure
outlined in the script creation chapter in this document. Scripts are created
outside of SunSpec SVP and added to the Scripts directory. This allows scripts to
be created and even tested in a Python development tool of choice. Script related
icons are orange.

When a script is selected in the navigation window, detailed script information is
displayed in the information window. The script information shows all the
parameters that are available for the script. The default value and possible values
are shown for each parameter.

SunSpec System Validation Platform- Version 1.0

14

k) SunsESysoem'vuidaﬁon Platform

P

File Edit Help

¥ | .\Sandia Inverter Test Protocol
B Suites
B Tests
=) Scripts
[Disable_Functions
I B
B INnv2
=R E]
I 8w
» [_fJResults

{ v v

=N

EUT Communication Parameters
Interface Type
Interface Name
Baud Rate
Parity
1P Address
1P Port
Map File
Slave Id
INV1 Test Parameters
Operation
Time Window (seconds)
Timeout Period (seconds)
INV1 Timing and Pass/Fail Parameters
Pre-Test Delay (seconds)
Power Verification Threshold for Pass/Fail (W)
Verification Delay (seconds)
Post-Test Delay (seconds)
Set INV1 to ON at the end of the test?
PV Simulator Parameters
PV Simulation Mode
1P Address
ENS50530 MPP Power (W)
ENS50530 MPP Voltage (V)
TerraSAS channel
PV Simulator Profile
TerraSAS Profile Name
Initial Irradiance (W/m*2)
Data Acquisition and Triggering
Trigger Method

Data Acquisition Method

Data Acquisition Computer
Node at Sandia - Used to ID DAQ channel

Default

RTU

CcoM3

9600

N
192.168.0.170
502
mbmap.xml
1

Connect
0
0

0
50
5
10
No

Manual
192.168.0.167
3000.0

460.0

10

None
1000.0

Disabled - Data from EUT
Disabled - Data from EUT

10 Node
10

==
National @
Laboratories

RTU, TCP, Mapped

Options

9600, 19200
N, E

Connect, Disconnect

Yes, No

TerraSAS, Manual

None, STPslrradiance

Disabled - Data from EUT, Create Local File for
Sandia LabView DSM

Disabled - Data from EUT, Sandia LabView
DSM, TCP Stream for Sandia LabView DSM

10 Node, DAS 3, DAS 5, DAS 8

<« o] IRl

n

] »

']

A script that is currently selected can be run with its default values by selecting the
Run option from the menu.

SunSpec System Validation Platform- Version 1.0

15

Tests

When a test is selected in the navigation window, detailed test information is
displayed in the information window. The test information shows the script
associated with the test and the test parameter values. Test related icons are green.

QQ p SyshL ‘ Platform
File Edit Help
7 ..\Sandia Inverter Test Protocol
» '8 Suites Sandia
v 5 Tests & II" National
v G INVL % INVA1 _1 Laboratories
- Script INVL
& INV1.2 ¥ EUT Communication Parameters
= INVL 3 Interface Type RTU
= INVL 4 Interface Name CcoMm3
=1 INVL S Baud Rate 9600
b INV2 Parity N |
> G INV3 Slave Id 1
W12 ¥ INV1 Test Parameters)
X Operation Disconnect
i disable Time Window (seconds) 0
» 'S5 Scripts Timeout Period (seconds) 0
» (:_l Results ¥ INV1 Timing and Pass/Fail Parameters
Pre-Test Delay (seconds) 0
Power Verification Threshold for Pass/Fail (W) 50
Verification Delay (seconds) 35
Post-Test Delay (seconds) 0
Set INV1 to ON at the end of the test? No
¥ PV Simulator Parameters
PV Simulation Mode Manual
¥ Data Acquisition and Triggering
Trigger Method Disabled - Data from EUT
Data Acquisition Method Disabled - Data from EUT

A test that is currently selected can be edited by selecting the edit option from the
menu. The edit test dialog allows any test parameter value to be set. The parameters
that are available for a test are parameters defined by the script associated with the
test.

SunSpec System Validation Platform- Version 1.0

.
Edit Test - INV1_1 =23

Script INV1

¥ EUT Communication Parameters
Interface Type RTU v
Interface Name COM3

Baud Rate
Parity m
Slave Id 1
¥ INV1 Test Parameters

Operation
Time Window (seconds) 0
Timeout Period (seconds) 0

0

50

35

0

¥ INV1 Timing and Pass/Fail Parameters
Pre-Test Delay (seconds)

Power Verification Threshold for Pass/Fail (W)
Verification Delay (seconds)

Post-Test Delay (seconds)

Set INV1 to ON at the end of the test?

¥ PV Simulator Parameters
PV Simulation Mode

¥ Data Acquisition and Triggering

Trigger Method [Disabled - Data from EUT v]
Data Acquisition Method [Disabled - Data from EUT v]
[oK] [Cancel]

A new test can be created by first selecting the test directory in which the new test
will reside. Use Select File->New->Test from the main menu or New->Test from
the context menu to create the new test.

The new test dialog asks for a test name and the script the test is associated with.
Once that information is provided, a standard test edit dialog populated with the
default values is used to finish the test creation.

SunSpec System Validation Platform- Version 1.0

7 B
New Test [_J-?&

Test Name:
New Test

Script:
-1 Disable_Functions
=R
=[NV
=1 INV3
=

INV2

ok || cancel |

A test that is currently selected can be run by selecting the Run option from the
menu.

Tests can be moved or renamed using the Move/Rename menu option. Any
references to the test in suites are updated with the new name.

Tests can be deleted using the Delete menu option. The test is deleted and any
references to that test in suites are removed.

SunSpec System Validation Platform- Version 1.0

18

Suites

When a suite is selected in the navigation window, detailed suite information is

displayed in the information window. The suite information shows global parameter
values associated with the tests and suites contained in the suite. Suite related icons

are blue.

=) SunSpec System Validation Platform

p— —

P =

File Edit Help
¥ | .\Sandia Inverter Test Protocol
v 15 Suites

v [Sandia

- B

B INnvL
B INnv2
B INV3
B w12
» [Nodel_TCP
» E Node6

B INnvL

B INnv2

B INV3

B w12
> '8 Tests
» '8 Scripts
» [jResuIts

»
»
»
»

El Node_10

¥ EUTC
Interface Type
Interface Name
Baud Rate
Parity
SlaveId
¥ PV Simulator Parameters
PV Simulation Mode
IP Address
EN50530 MPP Power (W)
EN50530 MPP Voltage (V)
TerraSAS channel
¥ Data Acquisition and Triggering
Trigger Method
Data Acquisition Method
Data Acquisition Computer
Node at Sandia - Used to ID DAQ channel
¥ Grid Simulator Parameters
Grid Simulation Mode
EUT nominal voltage for all 3 phases
Voltage profile
Grid Simulator Serial Port
Grid Simulator Max Voltage
Grid Simulator Max Current

ication P. ers

Sandia
National
Laboratories

RTU
CoM3
9600
N

5

TerraSAS
192.168.0.167
3000.0

460.0

10

Create Local File for Sandia LabView DSM
Sandia LabView DSM

10 Node

10

Ametek

277.2

Sandia Test Profile
coml

300.0

100.0

< 1 |

n

= ==

SunSpec System Validation Platform- Version 1.0

A suite that is currently selected can be edited by selecting the Edit option from the
menu. The edit suite dialog allows any global parameter value to be set. The
parameters that are available for a suite are an aggregation of all of the global
parameters associated with the tests and suites contained in the suite.

r Al
Edit Suite - INV1 (e

¥ Suite Members

B INVL/INVL 1 =8 Tests z
B # w INV1
= INVL/INVL 3 = G INV2
B INVL/INV1 4 = INV2.1 7
B INVL/INVLS = INv22
B INv2_3 4
B INv2.4
B INV2.5
=[inv26|
@ G INV3 3

Move Up] [MoveDownJ [Remove]

¥ EUT Communication Parameters

Interface Type RTU v
Interface Name ComM3
Baud Rate 9600 ~
Parity

SlaveId

¥ PV Simulator Parameters
PV Simulation Mode

¥ Data Acquisition and Triggering
Trigger Method [Disabled - Data from EUT v]
Data Acquisition Method [Disabled - Data from EUT ']

E UI

[ok || concel |

A new suite can be created by first selecting the test directory in which the new
suite will reside. Select File->New->Suite from the main menu or New->Suite from
the context menu to create the new suite.

The new suite dialog asks for the new suite name. Once that information is provided,
a standard suite edit dialog populated with the default values is used to finish the
suite creation.

[N
New Suite &J
Suite Name:
New Suite 23
OK] [Cancel

SunSpec System Validation Platform- Version 1.0

A suite that is currently selected can be run by selecting the Run option from the
menu. All members of the suite are run in the order they are specified in the suite.

Suites can be moved or renamed using the Move/Rename menu option. Any
references to the suite in other suites are updated with the new name.

Suites can be deleted using the Delete menu option. The suite is deleted and any
references to that suite in other suites are removed. The members of the suite being
deleted are not deleted.

Results

Results are created by running test or suites. When a result is selected in the
navigation window, the result log is displayed in the information window.

idati EESEE] ™
2 SunSpec System Validation Platform

File Edit Help
- 2015-05-01 16:24:12.385 D
¥ | .\Sandia Inverter Test Protocol 2015-05-01 16:24:12,385 D **+++sssss Starting INV]_] *serrssmses
» & Suites 2015-05-01 16:24:12.385 D Script: INV1.pyc 1.0.2
v '3 Tests 2015-05-01 16:24:12.385 1 EUT Communication Parameters:
v @ INVL 2015-05-0116:24:12.385 I Interface Type = RTU
- 2015-05-0116:24:12.386 I Interface Name = COM3
= INVL1 2015-05-0116:24:12386 1 Baud Rate = 9600
=1 INVL_2 2015-05-0116:24:12.386 I Parity = N
51 INVL_3 2015-05-0116:24:12.386 I Slaveld=1
B INVL4 2015-05-01 16:24:12.386 I INV1 Test Parameters:
: - 2015-05-0116:24:12.386 I Operation = Disconnect
= INVL5 2015-05-0116:24:12386 I Time Window (seconds) = 0
> G INV2 2015-05-0116:24:12.386 I Timeout Period (seconds) = 0
» G INV3 2015-05-01 16:24:12.386 I INV1 Timing and Pass/Fail Parameters:
W12 2015-05-0116:24:12.386 I Pre-Test Delay (seconds) = 0
_ 2015-05-01 16:24:12386 I Power Verification Threshold for Pass/Fail (W) = 50
& disable 2015-05-01 16:24:12.386 1 Verification Delay (seconds) = 35
v 'S Scripts 2015-05-0116:24:12.386 I Post-Test Delay (seconds) = 0
Ej Disable_Functions 2015-05-0116:24:12.386 I~ Set INV1 to ON at the end of the test? = No
; - 2015-05-01 16:24:12.386 1 PV Simulator Parameters:
i v 2015-05-0116:24:12.386 1 PV Simulation Mode = Manual
= INV2 2015-05-01 16:24:12.386 1 Data Acquisition and Triggering:
£ INV3 2015-05-0116:24:12.386 I Trigger Method = Disabled - Data from EUT
Ew 2015-05-0116:24:12.386 1 Data Acquisition Method = Disabled - Data from EUT
=S 2015-05-01 16:24:12.386 1 Simulation mode: Manual
v u F{esults 2015-05-01 16:24:23.841 I Scanning EUT
J 2015-05-01 16:24:23.863 E Error: Modbus error: Serial init error: could not open port
[] .44 847 Tests-INVI-INV1 1 COMS3: [Error 2] The system cannot find the file specified.
2015-05-01 16:24:23.863 1 Test Result - Result: Fail
<«[m] »

SunSpec System Validation Platform- Version 1.0

SunSpec SVP Execution Interface

When a test or suite is executed in SunSpec SVP using the Run option, execution
information is shown in the SVP execution interface window. The execution
interface window contains a progress and status window on the left and a log
window on the right.

Progress Information

The progress and status window on the left provides an entry for each of the
members of the suite or test being run along with a result icon indicating success,
failure, or completion.

Log Information

The log window displays the log generated by the script that is running. When there
are multiple members being run in sequence, the logs are concatenated in the
window.

Each log entry consists of a timestamp, a severity, and a message. Severity is
represented by a single letter: D - debug, E - error, I - informational, W - warning.

The contents of the log window are also stored in a result file in the Results
directory.

Status and Execution Control
The bottom of the execution interface window contains the current status of the

running member on the left and Play/Pause and Stop execution control buttons in
the middle.

SunSpec System Validation Platform- Version 1.0

22

Results Status Test Name Results Log

Run / P r/I ’ l- g

2015-04-16 16:16:19.971 D
/B INVLL 2015-04-16 16:16:19.971 D *****+** Gtarting INV]_1 *sssss
2015-04-16 16:16:19.971 D Script: INV1.pyc1.0.2
2015-04-16 16:16:19.971 I EUT Communication Parameters:
2015-04-1616:16:19.971 I Interface Type = RTU
2015-04-1616:16:19.971 I Interface Name = COM3
2015-04-1616:16:19.971 I Baud Rate = 9600
2015-04-1616:16:19971 I Parity= N
2015-04-1616:16:19971 I Slaveld=1
2015-04-16 16:16:19.971 T INV1 Test Parameters:
2015-04-1616:16:19.971 I Operation = Disconnect
2015-04-1616:16:19971 I Time Window (seconds) = 0
2015-04-1616:16:19971 I Timeout Period (seconds) = 0
2015-04-16 16:16:19.971 I INV1 Timing and Pass/Fail Parameters:
2015-04-1616:16:19.971 T Pre-Test Delay (seconds) = 0
2015-04-1616:16:19.971 I Power Verification Threshold for Pass/Fail (W) = 50
2015-04-1616:16:19.971 I Verification Delay (seconds) = 35
2015-04-1616:16:19.971 I Post-Test Delay (seconds) = 0
2015-04-1616:16:19.972 I SetINV1 to ON at the end of the test? = No
2015-04-16 16:16:19.972 1 PV Simulator Parameters:
2015-04-1616:16:19.972 I PV Simulation Mode = Manual
2015-04-16 16:16:19.972 1 Data Acquisition and Triggering:
2015-04-1616:16:19.972 I Trigger Method = Disabled - Data from EUT
2015-04-1616:16:19.972 1 Data Acquisition Method = Disabled - Data from EUT
2015-04-16 16:16:19.972 I Simulation mode: Manual
I 2015-04-16 16:16:28.914 I Scanning EUT
2015-04-16 16:16:28.926 E Error: Modbus error: Serial init error: could not open port
COM3: [Error 2] The system cannot find the file specified.
2015-04-16 16:16:28.927 1 Test Result - Result: Fail

Complete
"X >,

\

Run Status: Play/Pause and Stop Buttons
Running, Complete, Stopped

SunSpec System Validation Platform- Version 1.0

Chapter 4
Creating Scripts

This section describes the SunSpec SVP environment for scripts. Scripts provide the
functional logic associated with a particular testing use case. [deally, the unique
testing logic is contained in the script and the more general device support logic is
contained in support libraries.

The SunSpec SVP provides support for a number of operations a script might want
to perform such as define and acquire input parameters, send messages to the log,
prompt for confirmation, alert for exceptional conditions, and supply a final script
result.

A script is created and edited in a Python editor of choice and placed in the Scripts
directory of the SVP directory.

Scripts can be edited and debugged easily while residing in the destination Scripts
directory.

SunSpec SVP is distributed as a self-contained executable and contains all the
functionality of a standard Python 2.7.x release. In addition it contains the following
additional libraries that can be imported in any script: pysunspec, pyserial, and
numpy.

SunSpec SVP automatically puts the Lib directory of the SVP directory in the Python
system path (sys.path) to provide access to any libraries in that directory. Additional
libraries from an external Python distribution can be used but that solution may
break if the SVP directory is moved to system that does not have that library
installed.

Script Structure
A script that is structured to run in the SunSpec SVP environment must include the
following:

* A function named run() that has an svp.script.Script object as an argument

* A function named script_info() that returns an svp.script.Scriptlnfo object

* The script must import svp.script to be able to reference the Script and
ScriptInfo class definitions

This is all that is strictly required for a script to run in the SVP environment but
there is a little additional script structure that is useful to repeat in each script. A
template.pyx file is usually distributed in the Script directory as an example starting
point. The extension is changed so it will not be visible as a script in the SVP
directory.

SunSpec System Validation Platform- Version 1.0

24

The svp.script.ScriptInfo object is used by the script to define the script input
parameters and any logo files that should be associated with the script. See the
reference information for Scriptinfo below.

When a script is run in SVP, the run function is called with an svp.script.Script
object as an argument. As mentioned above, the methods of the Script object are
used to acquire input parameters, send messages to a progress/result log, prompt
for confirmation, alert for exceptional conditions, and supply a final script result. See
the reference information for Script below.

Scriptinfo

A Scriptlnfo object is used by a script to publish information about the script. The
two types of information that are currently supported are input parameters and any
logos that are associated with the script.

class Scriptinfo(Object)

Methods
logo(self, filename)

Associate a logo with the script for display purposes.
filename - The file name of the logo file in the Scripts directory.

param_group(self, name, label=None, desc=None, active=None, active_value=None,
glob=False, index_count=None, index_start=None)

Define a script parameter group.

name - The name of the parameter group. The name is the identifier that is
used to reference it in other parameters or functions associated with
parameters.

label - The display label for the parameter group.

desc - The description of the parameter group. The description is displayed in
a mouse over of the display label.

active - The active and active value settings are used to indicate that this
parameter is only active is any of the values in the active value list
match the current value of the parameter specified by active.

active_value - A list of values that are used to determine if the current script
parameter is active as outline in the description of active above.

glob - This is a True or False value that indicates if the parameter is global. If a
parameter is specified as global, it can be overridden in Suite
configurations.

SunSpec System Validation Platform- Version 1.0 25

index_count - If index count is specified, the script parameter is implemented
as a dictionary with a key created for each possible integer value from
index_start to index_count.

index_start - The starting integer key value for the script parameter dictionary
created if index_count is specified.

param(self, name, label=None, default=None, desc=None, values=None,
active=None, glob=False, active_value=None, ptype=None, width=None,
index_count=None, index_start=None)

Define a script parameter.

name - The name of the parameter group. The name is the identifier that is
used to reference it in other parameters or functions associated with
parameters.

label - The display label for the parameter group.

desc - The description of the parameter group. The description is displayed in
a mouse over of the display label.

active - The active and active value settings are used to indicate that this
parameter is only active is any of the values in the active value list
match the current value of the parameter specified by active.

active_value - A list of values that are used to determine if the current script
parameter is active as outline in the description of active above.

glob - This is a True or False value that indicates if the parameter is global. If a
parameter is specified as global, it can be overridden in Suite
configurations. Parameters inherit the glob settings of any parents.

ptype - Allows the specification of a specific parameter type for display
purposes. The valid values are: PTYPE_DIR, PTYPE_FILE. PTYPE_DIR
specifies the parameter is a string representing a directory path in the
file system. PTYPE_FILE specifies the parameter is a string representing
a file path in the file system.

width - Allows the specification of an alternate display width for the
parameter.

index_count - If index count is specified, the script parameter is implemented
as a dictionary with a key created for each possible integer value from
index_start to index_count.

index_start - The starting integer key value for the script parameter dictionary
created if index_count is specified.

SunSpec System Validation Platform- Version 1.0 26

Script
An instance of a Script object is passed to the Run function in the script.

class Script(Object)

Methods
sleep(self, seconds)

Sleep for the time specified. The time may be a fractional float.
seconds - Time in seconds to sleep.
log(self, message, level=INFO)
Create log message.
message - Log message string.

level - Severity level of the log message. Valid severity levels are: DEBUG,
ERROR, INFO, and WARNING.

log_debug(self, message)
Create debug log message. Same as log(message, level=DEBUG).
message - Log message string.

log_error(self, message)
Create debug log message. Same as log(message, level=ERROR).
message - Log message string.

log_warning(self, message)
Create debug log message. Same as log(message, level=WARNING).
message - Log message string.

alert(self, message)
Generate an alert message than requires acknowledgment.
message — Alert message string.

param_get(self, name)
Get the current value of the script parameter specified by name.
Returns the current value.

name - Parameter name.

SunSpec System Validation Platform- Version 1.0

log_active_params(self, param_group=None, config=None, level=0)

Log the current active parameters. Typically used at script startup to log the
script configuration.

param_group - Parameter group object.
config - Script configuration object.
level - Indentation level.
confirm(self, message)
Generate an confirmation message than requires acknowledgment.
Returns True if confirmed, other False.
message - Confirm message string.
result(self, result=None, params=None, detail=None)

Set the script result. Should be one of the following: RESULT_COMPLETE,
RESULT_PASS, RESULT_FAIL.

result - Result
config name(self)

Returns the name of the script configuration.

SunSpec System Validation Platform- Version 1.0

28

