Goal: Develop, demonstrate and evaluate a turn-key, Smart Inverter standardization and go-to-market solution to enable high PV penetration beyond the 15% Institute of Electrical and Electronics Engineers (IEEE) 1547.2-2008 guideline.
TABLE OF CONTENTS

EXECUTIVE SUMMARY ... 1
INTRODUCTION ... 4
THE CHALLENGE .. 5
CURRENT STATE OF DER MARKET ... 6
THE DISTRIBUTED ENERGY RESOURCES (DER) MARKET .. 6
 Evolved State of the DER Market .. 7
 Purpose ... 9
 Objectives ... 9
OVERVIEW ... 9
APPROACH ... 10
 Phased Execution .. 10
 I. Assemble a World-Class Team ... 10
 Technical Advisory Committee ... 10
 Project Participants .. 11
 Engage with Inverter Manufacturer Product Development Organizations 11
 Execute and Iterate .. 12
 II. Develop CA Rule 21 Compliance Test Framework and Evaluate Smart Inverters for Rule 21 Compliance ... 12
 Develop Interlocking Technologies to Validate the Theory .. 12
 Smart Inverter Evaluation Report .. 12
 Key Findings .. 13
 Manufacturers Are Ready to Serve the Market .. 13
 Technological Advancement of Smart Inverter Test Automation 13
 Smart Inverters Perform as Intended .. 14
III. Demonstrate and Evaluate Impact of High PV Penetration using Smart Inverters with Energy Storage on the SCE Grid.. 15
 Objectives .. 15
 Schedule .. 16
 Software Execution Environment ... 16
 Public Key Infrastructure (PKI) Integration ... 17
 Key Findings .. 18
 Smart Inverters with IEEE 2030.5/CSIP Networks Operate as Predicted .. 18
 CSIP DER Group Management Worked Effectively ... 18
 Non-managed Physical Networks Produce Expected Results .. 18
 CA Rule 21 Does Not Account for Local Preferences or Alternate Controls ... 19
 CA Rule 21 Does Not Address Interaction with the Independent System Operator 19
 Additional Technical Refinement is Required ... 19
 Recommendations .. 20
 Determine the Level of Asset Availability Required for DER Networks .. 20
 Modify CA Rule 21 To Incorporate IEEE 1547-2018 Communication Requirements 20
 Develop a Dynamic Opt-In/Opt-Out Program for Asset Participation in Grid Control 20
 Investigate the Use of Primacy to Facilitate Third-Party Interaction .. 20
 Set a Proficiency Standard for Installers Involved in Network Commissioning 21
 Specify and Standardize the Utility Provisioning Process ... 21
 Set Standard Requirements for Utility-Server-to-Aggregator Integration .. 21
 Confirm Efficacy of Remaining CA Rule 21 Controls .. 21
 Establish a Process of Continuous Improvement ... 21
IV. Demonstrate and Evaluate the Impact of Coordinated DER Asset Participation in Demand Response Markets .. 22
 Goals .. 22
 DERs in Retail Markets ... 22
 CA Rule 21 ... 22
 Common Smart Inverter Profile (CSIP) .. 22
 Challenges with Current Wholesale Market .. 25
 Recommendations and Conclusions ... 25
 Recommendations ... 25
 Revise Tariffs to Provide Significant Increases in DER Value Propositions ... 25
 Create Harmonized Protocol for DER Communication in Retail and Wholesale Markets 26
 Explore Integration of DNP3 into CSIP Defined IEEE 2030.5 Aggregator Software 26
 Conclusion
 Existing DER Communications Protocol in the Retail Market can be Applied to a Framework to Support Deployment of DERs onto the Wholesale Market ... 26
V. Smart Inverter Value Proposition Analysis ... 27
 Objectives .. 27
 Smart Inverter Value Proposition Analysis Methodology .. 27
 Application Concepts ... 28
 Functions ... 28
 Benefits ... 29
 Application Concepts Matrix ... 30
 Benefits Matrix .. 31
 Key Finding
 Smart Inverter Value Proposition Analysis Shows $640 Million to $1.4 Billion Annually .. 32

VI. Outreach and Education ... 33
 Specifications and Related Documents .. 33
 Market Outreach Summary ... 33
 CA Rule 21 Education Program ... 33

RESULTS ... 35
Smart Inverters Enable 100%+ Penetration of DER .. 35
Smart Inverter Value Proposition Analysis Results .. 36
CA Rule 21 Technical Specifications and Test Criteria .. 37
Smart Inverter Communication Go-To-Market Platform .. 38
Confirmation of Smart Inverter CA Rule 21 Conformance ... 38
Influencing Relevant DER Source Standards .. 39
Improvements of Cybersecurity Practices and Infrastructure 39
Communication Interface Certification Program .. 40
SunSpec Public Key Infrastructure (PKI) .. 41

BENEFITS TO CALIFORNIA .. 42
Quantitative Benefits .. 42
 Smart Inverter Value Proposition Analysis Shows $640 Million to $1.4 Billion Annually .. 42
 152X Return on Investment to California Stakeholders .. 43
 $500 Per System Savings Due to Standardization ... 43
Qualitative Benefits ... 46
 DER With Smart Inverters Support California Clean Energy and Environmental Initiatives .. 46
 CA Rule 21 Jumpstarts California’s IEEE 1547-2018 Standard Compliance 48
 DER Systems with Smart Inverters Create Grid Benefits: Greater Reliability, Improved Capacity Optimization and Flexibility ... 48
 DER Systems with Smart Inverters Provide Increased Ratepayer Safety 48
 High Penetration DER Enabled by Smart Inverters Drives Economic Development 49
 High Penetration Distributed Photovoltaics and Storage Reduce GHG Emissions by 112 million metric tons annually for a cost savings of $1.7 billion ... 50
 High Penetration Distributed Photovoltaics and Storage Reduce Criteria Air 50
 DER Systems Contribute to Energy Security .. 51
Conclusions .. 52
 Sustaining long-term engagement of vendors with limited roles is challenging 52
 Reliance on a single sub-awardee to lead multiple phases of a project is risky 52
CONCLUSIONS AND RECOMMENDATIONS ... 52
 Bridging retail and wholesale energy markets will take more work 53
 New methods are needed to evaluate the economic benefits of DER and Smart Inverters .. 53
Considerations for Further Development .. 53
 Market Considerations ... 53
 System Cost and Compensation .. 54
 Consumer Impacts and Protections .. 54
Future Capabilities of Smart Inverters ... 55
 Conclusion .. 56

ACKNOWLEDGEMENTS ... 57

GLOSSARY ... 58

REFERENCES ... 61

ABOUT SUNSPEC ALLIANCE .. 63

LIST OF TABLES
Table 1: IEEE 2030.5 Functions with Corresponding Grid DER Support Functions 24
Table 2: Comparing Retail Market Use Cases with IEEE 2030.5 Functions .. 24
Table 3: Smart Inverter Value Proposition Analysis Applications Concept Matrix 30
Table 4: Smart Inverter Value Proposition Analysis Benefits Matrix .. 31
Table 5: Smart Inverter Value Proposition Analysis Summary .. 32, 36, 43
Table 6: Interoperability Standardization Lowers PV System Cost by $500 per System 45

LIST OF FIGURES
Figure 1. California Independent System Operator Duck Curve ... 6
Figure 2. Organizations Involved with the Project .. 11
Figure 3. SunSpec System Validation Platform (SVP) ... 14
Figure 4. IEEE 2030.5/CSIP-To-SunSpec Modbus Gateway Solution .. 16
Figure 5. SunSpec Official PKI IEEE 2030.5 Trust Chain Including Manufacturers 17
Figure 6. IEEE 2030.5/CSIP Digital Key Exchange ... 17
Figure 7: Example Network Topology as Described by CSIP ... 23
Figure 8. CSIP: Network Configuration & Scope ... 37
Figure 9. SunSpec Public Key Infrastructure Go to Market Process .. 41
EXECUTIVE SUMMARY

California SB-100 legislation declares that 100% of the state’s electricity needs must soon be met by solar PV and other renewable energy sources. Smart Inverters enabled by standard data communication capabilities will play an integral role in helping California reach its 100% clean energy goal by providing grid support mechanisms and enhancing grid system flexibility.

Two primary factors have stood in the way of California achieving its electricity goals:

- The Institute of Electrical and Electronics Engineers (IEEE) 1547-2003 standard limits the amount of DER that can be installed at 15% of peak feeder load.\(^1\)
- Due to the mismatch between when solar energy is harvested (during daylight hours) and used (24 hours per day), combined with the inability of non-smart inverters to mitigate their own negative grid impacts, the value of solar PV is a contentious issue.

Noting that achievement of its goals and the revision of the IEEE 1547 national standard were going slowly, California took it upon itself to update the California (CA) Rule 21 regulation. This regulation change included defining new electrical capabilities and communication functions that are normally covered in the IEEE 1547 standard.

As the California market was ahead of the rest of the world, the California Energy Commission rightly determined that vendors and utilities were unlikely to solve these problems in the near term and that CEC assistance would be required. Hence, this project was funded and launched.

PROJECT PURPOSE

The goal of the EPC-14-036 project was to develop, demonstrate and evaluate a turn-key, Smart Inverter standardization and go-to-market solution to enable high PV penetration beyond the 15% Institute of Electrical and Electronics Engineers (IEEE) 1547.2-2008 guideline.

\(^1\) (Anderson Hoke, 2012)
PROJECT APPROACH
The project accomplished its goals by enabling a collection of Smart Inverter brands to be standardized around support of CA Rule 21 Smart Inverter functions and the SunSpec Modbus communication interface. The interface is low-cost and scalable across DER system sizes, and results in plug-and-play compatible solutions. This capability fills a critical technology gap, enables grid operators to monitor and control DER assets cost effectively, improves grid stability, and will enable DER systems to participate in ancillary services markets.

PROJECT RESULTS
This project delivered the following direct results:

- Developed and deployed a low-cost, standard test lab platform for Smart Inverters that utilizes standard communication interfaces and conformance validation procedures to prove CA Rule 21 compliance. The test lab platform is based on open specifications, developed in this project, that can be implemented in any commercial or academic setting. It leverages the open test software that was also developed in this project.
- Demonstrated that five Smart Inverter manufacturers support CA Rule 21 Phase 1 autonomous functions and settings changes via CA Rule 21 Phase 2 compliant network.
- Demonstrated that CA Rule 21 Phase 2 compliant networks, including the IEEE 2030.5 protocols, can be deployed and implemented as intended.
- Demonstrated, via laboratory testing and field verification, that the cost of DER deployment can be reduced by $500 per system by using a standard communication interface.
- Demonstrated, via simulation and field verification, that Smart Inverters enable DER systems to safely generate 100% of circuit load (i.e. 100% DER grid penetration).
- Developed a new valuation model that projects Smart Inverters provide between $640 million and $1.4 billion per year in value to California.
- Delivered the project on time and on budget while leveraging $2.2 million in in-kind contributions from industry.
- By demonstrating that 100% DER grid penetration is possible, this project shatters the 15% DER ceiling currently enforced by utilities across the country unlocks the potential of Distributed Energy Resources for California.

6 Lloyd Cibulka, Bob Fox, Tom Tansy, Suzanne Martinez, Jan Kleissl. (University of California San Diego). 2018. Smart Inverter Performance Testing To UL 1741 SA and CA Rule 21 Criteria: Results From the UC San Diego Smart Inverter Laboratory. California Energy Commission.
TECHNOLOGY TRANSFER AND MARKET ADOPTION

By design, technology transfer in this project was constant, from inception to conclusion. Seven Smart Inverter companies started this project and five successfully finished performance and interoperability testing; hundreds of individuals attended SunSpec-hosted webinars on Smart Inverter networking, hundreds attended in-person events, and more than 150 people attended a project-supported university-level course on the topic; 350 people met (and still meet) to develop cybersecurity standards to support this initiative; and now SunSpec is offering its SunSpec Certified program to validate that Smart Inverters and their associated communication systems comply to CA Rule 21 standards.

BENEFITS TO CALIFORNIA

The resulting value and benefits from Smart Inverters to the state of California and its grid infrastructure are significant. To define a specific economic value, the project performed a “Smart Inverter Value Proposition Analysis” to quantify grid benefits. The results of this analysis show an added value of $640 million to $1.4 billion per year from Smart Inverters.

SMART INVERTER VALUE PROPOSITION ANALYSIS SUMMARY

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Low Case</th>
<th>High Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability</td>
<td>$290,000,000</td>
<td>$660,000,000</td>
</tr>
<tr>
<td>Power Quality</td>
<td>$30,000,000</td>
<td>$100,000,000</td>
</tr>
<tr>
<td>Energy Delivery Efficiency</td>
<td>$30,000,000</td>
<td>$70,000,000</td>
</tr>
<tr>
<td>Dispatchable Resources</td>
<td>$270,000,000</td>
<td>$530,000,000</td>
</tr>
<tr>
<td>Avoided/Deferred T&D Upgrades</td>
<td>$20,000,000</td>
<td>$70,000,000</td>
</tr>
<tr>
<td>Total</td>
<td>$640,000,000</td>
<td>$1,430,000,000</td>
</tr>
</tbody>
</table>

Summary table of Value Proposition Analysis results. Dollar values rounded to the nearest $10MM.

The project also delivered or enabled these additional benefits:

- 152X return on EPC-14-036 investment to California stakeholders.
- $500 per system savings due to standardization.
- Annual cost savings of $1.7 billion from reducing greenhouse gas emissions by 112 million metric tons by moving to 100% renewable energy.
- CA Rule 21 reform, catalyzed by this project, enabled the IEEE 1547-2018 standard to be developed and ratified.

In summary, this project has demonstrated that Smart Inverters enable DER systems to safely operate at penetration rates of 100% of circuit load and has developed a streamlined standardization Smart Inverter platform to enable 100% DER grid penetration. SunSpec’s Smart Inverter platform enables a networked energy environment, with DER serving multiple purposes and providing multiple benefits to the grid and the state of California.
INTRODUCTION

The California Energy Commission’s Energy Research and Development Division supports energy research and development programs to spur innovation in energy efficiency, renewable energy and advanced clean generation, energy-related environmental protection, energy transmission and distribution and transportation.

In 2012, the Electric Program Investment Charge (EPIC) was established by the California Public Utilities Commission to fund public investments in research to create and advance new energy solutions, foster regional innovation and bring ideas from the lab to the marketplace. The California Energy Commission and the state’s three largest investor-owned utilities – Pacific Gas and Electric Company, San Diego Gas & Electric Company and Southern California Edison Company – were selected to administer the EPIC funds and advance novel technologies, tools, and strategies that provide benefits to their electric ratepayers.

The Energy Commission is committed to ensuring public participation in its research and development programs that promote greater reliability, lower costs, and increased safety for the California electric ratepayer and include:

- Providing societal benefits.
- Reducing greenhouse gas emission in the electricity sector at the lowest possible cost.
- Supporting California’s loading order to meet energy needs first with energy efficiency and demand response, next with renewable energy (distributed generation and utility scale), and finally with clean, conventional electricity supply.
- Supporting low-emission vehicles and transportation.
- Providing economic development.
- Using ratepayer funds efficiently.

Distributed Energy Resources (DER), typically consisting of solar PV and energy storage systems on homes and commercial buildings, are a growing source of power on the electric grid. Paired with Smart Inverters, DER have vast potential as a controllable resource for the grid. This project demonstrates that Smart Inverters compliant with CA Rule 21 Phase 1 and Phase 2 requirements can be installed safely at penetration levels of 100% or more while simultaneously eliminating reverse energy flow and mitigating thermal problems associated with non-Smart Inverters. A financial analysis of this proposition shows a value of $640 million to $1.4 billion per year due to the benefits of Smart Inverters.

This project describes a framework that enables CA Rule 21 compliant Smart Inverters to be deployed and integrated into the grid. The results of this project—in lab testing, cybersecurity, education, verification, and certification for Smart Inverters—provide a pathway for DER to achieve critical mass and enable solutions throughout the California grid.
California SB-100 legislation declares that 100% of the state’s electricity needs must soon be met by solar PV and other renewable energy sources. Smart Inverters enabled by standard data communication capabilities will play an integral role in helping California reach its the 100% clean energy goal by providing grid support mechanisms and enhancing grid system flexibility.

Two primary factors have stood in the way of California achieving its electricity goals:

- The Institute of Electrical and Electronics Engineers (IEEE) 1547-2003 standard limits the amount of DER that can be installed at 15% of peak feeder load.
- Due to the mismatch between when solar energy is harvested (during daylight hours) and used (24 hours per day), combined with the inability of non-smart inverters to mitigate their own negative grid impacts, the value of solar PV is a contentious issue.

Noting that achievement of its goals and the revision of the IEEE 1547 national standard was going slowly, California took it upon itself to update the CA Rule 21 regulation. This regulation change included defining new electrical capabilities and communication functions that are normally covered in the IEEE 1547 standard.

As the California market was ahead of the rest of the world, the California Energy Commission rightly determined that vendors and utilities were unlikely to solve these problems in the near term and that CEC assistance would be required. Hence, this project was funded and launched in 2015.
Current State of DER Market

Current discussions around DER mainly focus on solar PV, as about half of expected DER capacity additions will come from distributed PV.11

While a valuable source of renewable energy, the grid impact and value of solar PV is also a particularly contentious resource due to its intermittency and production curve. This is most apparent in the infamous California ISO duck curve, which shows the ramp in the “neck” of the duck caused by the mismatch between the PV production curve and the load demand. This ramp exacerbates with increasing PV penetration, and could result in sub-optimal grid performance and grid instability.

\textbf{Figure 1. California Independent System Operator Duck Curve}

11 (John, 2018)
To limit negative effects, the IEEE 1547.2 “15% Rule” caps the penetration of DER at 15% of the peak feeder load. In practice, even lower levels of penetration can trigger feeder impact studies or even distribution capacity upgrades within utilities. Both can extend the commissioning and installation process for DER and incur significant costs to developers.

For example, in the highly penetrated grid of Hawaii, the Hawaii Public Utilities Commission decided to end the net-metering program in 2015, citing difficulties with maintaining grid stability. This led to a 52% drop in PV permitting from 2016 to 2017.

Since this project was initiated in 2015, new policies have been introduced that encourage or mandate growth of DER deployment. The Commission has published two landmark bills: AB 2514, which directed the Commission to set targets for utilities to procure grid-connected energy storage systems and directed IOUs to adopt appropriate storage targets, and AB 2868, which requires the Commission to direct the IOUs to implement programs and investments to accelerate deployment of distributed energy storage, with a total goal of 500 MW in addition to the targets set by AB 2514. While not explicitly requiring additional DER capacity, FERC Order 841 includes language that allows for simultaneous retail and wholesale market participation by DER, enabling further usage and deployment of DER on the grid.

SB 100, California Renewables Portfolio Standard Program, enacted in September 2018 ahead of Governor Brown’s Global Climate Action Summit, legislatates an increase to 60 percent (from 50 percent) of California’s electricity portfolio to renewables by 2030 and establishes a further goal to have an electric grid that is entirely powered by clean energy by 2045.

Evolved State of the DER Market

DER comprised of solar PV and storage will address the California policy goals stated above. Smart Inverters will play an integral role in reaching the 100% clean energy goal outlined by SB 100 by enabling and enhancing flexibility on the distribution system.

With the “15% Rule” eliminated, DER can provide substantial benefits to the health and operation of the grid. Unlike the traditional grid structure, with centralized generation providing power to loads through the transmission and distribution network, DER allow for additional generation resources throughout these networks. The addition of DER on the grid, with the correct grid architecture to support it, enables “bidirectional” or “two-way” power flow operation and allows ratepayers to become “prosumers,” both providing and consuming power. As generation resources, DER represent added power capacity to support the grid. Storage DER are particularly useful for this application, as they represent not only additional power capacity but a stored and deployable energy capacity.

With the “15% Rule” eliminated, DER can provide substantial benefits to the health and operation of the grid.

12 (Anderson Hoke, 2012)
13 (Wesoff, 2017)
14 (California Energy Commission, 2018)
16 (Koseff, 2018)
With the proper regulation, DER can be utilized to participate in both local retail markets and regional wholesale markets. Therefore, DER present a significant opportunity for both utilities and Independent System Operators (ISOs) as a market resource.

Large networks of DER can provide alternative transmission or distribution solutions (ATS or ADS) to support a changing grid. For example, as distribution loads grow, capacity upgrades such as additional power lines and transformers are needed to support the increased power flow from the centralized generation through the distribution network. With DER, these upgrades can be deferred and even avoided due to the additional generation resources DER provide in the distribution network. Such DER solutions have also been extensively studied in the context of California ISO’s Transmission Planning Process (TPP), through which ATS are decided and implemented for the transmission network.

This potential, however, comes with some caveats and requirements. In order to deploy DER at scale, the supply chain must be improved, including creating and enforcing operating standards, as well as ensuring that DER conform to those standards. If DER are not properly visible to the ISO or Distribution System Operator (DSO), ISO-DSO coordination is not sufficient, or DER are not properly incentivized, controlled or managed, then increasing the penetration of DER on the grid becomes difficult, leading to increased operational challenges that could incur further system costs.

Smart Inverters, along with the results delivered in this project, represent an important component in mitigating these issues and allow for the proliferation of DER and their benefits throughout the grid.

18 (MARK DYSON, 2018)
19 (Kerinia Cusick, 2019)
Purpose

The goal of the EPC-14-036 project was to develop, demonstrate and evaluate a turn-key, Smart Inverter standardization and go-to-market solution to enable high PV penetration beyond the 15% Institute of Electrical and Electronics Engineers (IEEE) 1547.2-2008 guideline.

Objectives

The project had five specific objectives:

1. Provide a standards-ready test and certification framework that enables timely execution to support CA Rule 21 updates.

2. Reduce DER system engineering costs by 10% from current baselines through integration of existing standards and by providing plug-and-play interoperability across manufacturers.

3. Demonstrate mitigation of the impact of increased PV penetration on the feeder circuits, above the IEEE-mandated 15% penetration level limit, through seamless communication between CA Rule 21-compliant Smart Inverters and the utility using standard communication protocols.

4. Demonstrate the ability of Smart Inverters to support the power grid during system disturbances and increase overall power grid reliability.

5. Identify new revenue models for DER investors and operators by enabling standards-compliant systems to participate in ancillary grid services markets, accelerating the achievement of SB X1-2 goals.
The project accomplished its goals by enabling a collection of Smart Inverter brands to be standardized around support of CA Rule 21 Smart Inverter functions and the SunSpec Modbus communication interface\(^2\). The interface is low-cost and scalable across DER system sizes, and results in plug-and-play compatible solutions. This capability fills a critical technology gap, enables grid operators to monitor and control DER assets cost effectively, improves grid stability, and will enable DER systems to participate in ancillary services markets.

Phased Execution

The project was executed in a phased approach.

I. Assemble a World-Class Team

The project team included a technical advisory committee and the project participants.

TECHNICAL ADVISORY COMMITTEE

A Technical Advisory Committee was formed of parties not directly associated with the project to provide guidance to the project team. The advisory group met twice.

<table>
<thead>
<tr>
<th>Tom Herbst,</th>
<th>James Mokri,</th>
<th>Denver Hinds,</th>
<th>TJ Vargas,</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTO Internet of Things Solutions at Cisco, former Sr. Director for Standards and Technology, Silver Springs Networks</td>
<td>lecturer in mechanical engineering at San Jose State University specializing in solar and electric vehicle charging infrastructure</td>
<td>Smart Energy Systems Engineer, Sacramento Municipal Utility District</td>
<td>R&D Engineer, Sacramento Municipal Utility District</td>
</tr>
</tbody>
</table>
PROJECT PARTICIPANTS

To achieve the program goals, the SunSpec Alliance engaged with a team of Smart Inverter manufacturers (ABB, Advanced Energy, Enphase Energy, Fronius International, Ideal Power, Kaco New Energy, Pika Energy, Outback Power, SMA, and Tabuchi Electric); the University of California San Diego, operator of the Smart Inverter test laboratory where Smart Inverters were evaluated; Southern California Edison, the Investor Owned Utility where the networked PV+storage field trial was performed; Kitu Systems, the system integrator and provider of IEEE 2030.5/CSIP network software for the project; an extended team of DER system installers and cybersecurity experts who helped the SunSpec project team to discover the realities of deploying DER systems with secure communication in a production environment; Strategen Consulting, a professional services company that specializes in market development for a decarbonized grid and that provided economic analysis and research support; and QualityLogic, a test tool vendor that supported curriculum development.

ENGAGE WITH INVERTER MANUFACTURER PRODUCT DEVELOPMENT ORGANIZATIONS

The project engaged with the product development teams of Smart Inverter manufacturers to standardize support for the CA Rule 21 Smart Inverter functions and the open SunSpec communication interface standard. The SunSpec interface is specified by IEEE 1547-2018, low-cost, scalable from residential to large-scale commercial systems, and results in plug-and-play compatible solutions. It fills a critical technology gap, enables grid operators to monitor and control DER assets cost effectively, improves grid stability, and will enable DER systems to participate in ancillary services markets.
EXECUTE AND ITERATE

With a project as ambitious and complex as this one, it was clear that a nimble and exacting management approach was needed. To ensure that the project stayed on track throughout the inevitable ups and downs of standards development processes, regulatory development processes, an evolving partner/contractor mix, and technical setbacks and breakthroughs, the project maintained an agile posture.

Sub-groups within the team met weekly and aligned their short-term objectives to tasks that could be accomplished in three-week sprints. The larger group met less frequently, but often came together in conjunction with market outreach activities. Financial management was addressed rigorously, with an emphasis on timely delivery, in-kind contribution accounting, and precise record keeping.

Most importantly, the project was galvanized by the knowledge of the importance and timeliness of the work to the state of California and to the planet.

II. Develop CA Rule 21 Compliance Test Framework and Evaluate Smart Inverters for Rule 21 Compliance

The specific deliverables related to this phase of the project built the foundational test plan and test scripts to administer Smart Inverter testing; and then to evaluate and report on this testing.

DEVELOP INTERLOCKING TECHNOLOGIES TO VALIDATE THE THEORY

The Smart Inverters in this project were complemented by a Smart Inverter test framework and open source software tools to enable rapid product development and compliance testing.

To estimate grid impacts, the project team developed power flow models to emulate target feeder conditions. To validate the power flow models and to prove data communication interoperability, the project team deployed a field trial network and collected empirical data.

The project team assimilated and analyzed the data collected during the lab tests and field pilot to demonstrate the validity of the predicted benefits specified in the project goals.

Finally, the project developed a financial model to estimate the economic impact of deploying Smart Inverters at scale.

SMART INVERTER EVALUATION REPORT

Working with the research team at University of California, San Diego (UCSD), the report product is titled, Smart Inverter Performance Testing to UL 1741 SA and CA Rule 21 Criteria: Results from the UC San Diego Smart Inverter Laboratory.

The objectives of this part of the EPC 14-036 project were three-fold:

- Determine the effectiveness of utilizing a standard data communication protocol to change settings of CA Rule 21 Phase 1 functions of DER systems that incorporate energy storage;
- Determine the readiness of the smart inverter industry to meet future CA Rule 21 requirements; and
- Develop an open, software-based framework for testing and evaluating smart inverters for functional performance and communication interoperability.

With the exception of exercising energy storage in the lab (this was covered in the field trial portion of the project) all three objectives were achieved in a complete and robust manner.

21 Lloyd Cibulka, Bob Fox, Tom Tansy, Suzanne Martinez, Jan Kleissl. (University of California San Diego). 2018. Smart Inverter Performance Testing to UL 1741 SA and CA Rule 21 Criteria: Results From the UC San Diego Smart Inverter Laboratory. California Energy Commission.
KEY FINDINGS
The results of this part of the project were substantial and punctuated by achievements in three specific areas:
1. confirmation that smart inverter manufacturers are ready to serve the market,
2. significant technological advancement in the area of smart inverter test automation, and
3. validation that commercial smart inverters perform as intended.

Manufacturers Are Ready to Serve the Market
The key question of whether manufacturers would produce smart inverters with UL 1741 SA certification in time for CA Rule 21 Phase 1 (September 2017) was answered resoundingly in the affirmative. A total of eleven (11) smart inverter manufacturers participated in the project and five submitted their products for testing. Several of these manufacturers started the project using older product models but ultimately switched to new hardware designs as the project progressed. Ten (10) of the eleven (11) vendors that participated offer UL 1741 SA compliant products and have done so since CA Rule 21 Phase 1 took effect.

Technological Advancement of Smart Inverter Test Automation
The smart inverter test lab at UCSD became fully operational in the first year of the project. The lab design is based on the SunSpec Advanced Function Inverter Test Lab Specification. This specification calls for low-cost, off-the-shelf components and is driven by the open source SunSpec SVP software platform. The design of the test lab is very efficient (total set up budget was less than $300,000) and can be replicated at other research facilities or academic institutions. A version of the test lab specification that incorporates hardware-in-the-loop capabilities is being developed to further reduce set up cost.

The foundation of the smart inverter test lab is SunSpec SVP. This cutting-edge DER system validation software has been continuously improved over years. Enhancements made in this project have resulted in a complete suite of UL 1741 SA/CA Rule 21 test scripts. These scripts are available to the public in open source form thus enabling free access and rapid innovation.

Given the complexity of testing CA Rule 21 related functionality, development and delivery of the open SunSpec SVP software to the market is one of the project’s most important outcomes. The availability of this open platform means that DER vendors, DER asset owner/operators, and academic institutions (including other UC’s, California State University campuses, and California Junior Colleges) can adopt the technology to develop their own DER research facilities and train the next generation of workers that will be required by the market.
Smart Inverters Perform as Intended

The five smarter inverters evaluated in this project have all been certified to the UL 1741 SA functional standard, thus qualifying them for installation under CA Rule 21 Phase 1. This project verified each inverter’s compliance with CA Rule 21 Phase 1 requirements by exercising function setting changes in the UCSD smart inverter lab. While test coverage was inconsistent across manufacturers and there is still much smart inverter R&D to be done, all inverters evaluated produced results that demonstrate compliance.
III. Demonstrate and Evaluate Impact of High PV Penetration using Smart Inverters with Energy Storage on the SCE Grid

The specific deliverables related to this phase of the project created a field trial simulation of DERs on the grid.

OBJECTIVES
This field trial project had four primary objectives:

- **Validate Laboratory Findings that PV Grid Penetration of More Than 15% is Feasible**

 The first objective was to confirm that IEEE 2030.5/CSIP controls work as described by the “Smart Inverters for High PV Penetration: Analysis of Functionality and Behavior” report. To achieve this objective, the project team cooperated with SCE to devise and execute a set of dispatch operations over a period of time and measure the results.

- **Understand Impediments to Deployment of IEEE 2030.5/CSIP Networks**

 The third objective was to uncover and understand impediments to the deployment of IEEE 2030.5/CSIP networks. For example, how does management of the physical communication link affect operational processes? Are security requirements and procedures viable? Are any key pieces of infrastructure missing? To achieve this objective, the SunSpec core team used its experience and consulted with networking and security experts within the SunSpec Alliance.

- **Measure Impact of DER Settings Changes on Grid Feeder Circuit Operation**

 The second objective was to measure the impact of DER settings changes over time by monitoring a grid circuit containing the smart inverter-based PV+storage systems, specifically by detecting voltage differences and other faults. Given low penetration on each circuit in which field pilot systems were installed (estimate at sub 5%), changes were imperceptible and this objective could not be met.

- **Quantify Savings Provided by Standardizing Smart Inverters and Data Communication**

 The fourth objective was to identify acquisition or operational savings that accrue from standardizing smart inverters and the data communication systems that support them. To achieve this objective, the project team consulted with manufacturers, project developers, asset owners, and other members of the SunSpec Alliance to identify manufacturing or process inefficiencies and their respective costs.
The field trial was scheduled to start in Q1 2017 and run for one full year. It suffered a delay when a major sub-award contractor failed to start the project on time and then withdrew in late 2017. The responsibilities of this contractor included customer acquisition, smart inverter+PV+storage equipment acquisition, utility network integration, wholesale market integration, and network operation.

In Q1 2018, a replacement contractor (Kitu Systems) was selected. Kitu did an admirable job in assuming the original contractor’s role though certain adjustments needed to be made: process steps had to be repeated (e.g. customer acquisition, interconnection of new systems) or redesigned (e.g. a wholesale market demonstration task became infeasible and was substituted with analysis of wholesale market opportunities); the number of systems in the field trial was reduced; and installations were spread across multiple circuits.

By the end of Q3 2018, access to 20 smart inverter-based PV+storage systems had been secured for the field trial. The population shrunk to 15 due to interconnection (Permission To Operate) delays, and then shrunk again 12 systems when stable internet connectivity was not secured by system owners. These 12 systems were commissioned in SCE’s IEEE 2030.5/CSIP server in October 2018. Field testing finally began in November 2018 and concluded in late January 2019.

The IEEE 2030.5 client software in this field trial, called “Kitu Spark IEEE 2030.5 End-Node Solution” is a Linux application that runs on an embedded computing element installed in the smart inverter chassis. The computing element is powered by the inverter and communicates, via SunSpec Modbus, to the smart inverter’s main circuit board. The Kitu Spark IEEE 2030.5 End-Node Solution application runs in tandem with SunSpec Modbus client interface to form a “gateway.” The gateway translates signals coming to and from the Smart Inverter via SunSpec Modbus into the IEEE 2030.5 protocol signals understood by the IEEE 2030.5/CSIP aggregator. This figure below illustrates the gateway concept.
PUBLIC KEY INFRASTRUCTURE (PKI) INTEGRATION

For this field trial, digital certificates were generated by an ad hoc Public Key Infrastructure established by Kitu Systems specifically for this activity. Ad hoc systems are neither scalable nor secure enough for CA Rule 21 networks with potentially hundreds of thousands of nodes.

The SunSpec Alliance has established the SunSpec Official PKI Service to fill this critical gap. The SunSpec PKI is based on a platform that services millions of digital certificates in embedded devices and features world-class features including a U.S.-based trust root and superior supply chain integration capabilities.

Figure 5. SunSpec Official PKI IEEE 2030.5 Trust Chain Including Manufacturers

Figure 6. IEEE 2030.5/CSIP Digital Key Exchange
KEY FINDINGS
This field trial validated certain core assumptions and revealed aspects of system deployment that should be further studied and improved.

Smart Inverters with IEEE 2030.5/CSIP Networks Operate as Predicted
The conclusions of the SCE report on this project are generally correct: the system works as predicted and behaviors that would preclude circuit penetration in excess of 15% (e.g. unwanted or unpredicted energy export, inadequate reactive power support, unmitigated voltage rise) were not evident.

Core IEEE 2030.5 DER controls were tested and confirmed to operate as intended:
- Volt-Var (Rule 21 – Phase 1)
- Volt-Watt (Rule 21 – Phase 3)
- Frequency-Watt (Rule 21 – Phase 3)
- Maximum Real Power Limit (Rule 21 – Phase 3)
- Real Power Set Point (Rule 21 – Phase 3)
- Reactive Power Set Point (not part of Rule 21 but may be used for grid services)

Because of time constraints, some functions were not exercised:
- Fixed Power Factor (Rule 21 – Phase 1)
- Ramp Rates (Rule 21 – Phase 1)
- Ride-Through Curves (Rule 21 – Phase 1)
- Connect/Disconnect (Rule 21 – Phase 3)

CSIP DER Group Management Worked Effectively
The Common Smart Inverter Profile (CSIP) defines a method for utilizing the IEEE 2030.5 standard to create operational groups that can be independently managed. This project demonstrated that this grouping concept performs as intended: the operator was able to assign DERs to different groups and to target controls to those groups. The testing also confirmed the DERs were able to prioritize controls correctly using the group primacy attribute. Confirmation of the group management controls gives confidence that the system can operate at scale.

Non-managed Physical Networks Produce Expected Results
For this project, the DER communications used the customer’s existing broadband service. This type of communication link provides a “best effort” level of service. There are no guarantees for bandwidth, throughput, latency, or uptime. If a site loses its communication link, there is no guarantee when or if it will return to service. For “best effort” level of service, the system operator must assume a certain percentage of the DERs may be offline and make decisions accordingly.

CA Rule 21 Does Not Account for Local Preferences or Alternate Controls

For this project, CA Rule 21 DER controls took precedence over asset owner controls. However, CA Rule 21 does not preclude asset owners from expressing preferences that are different from those of the grid operator. For example, owners may prioritize providing power to critical local loads (e.g., medical or refrigeration equipment, safety lights, security systems) over grid control requests. Accordingly, the expectation of complete control by the utility is unrealistic.

Others in the DER ecosystem may also assert priority over the utility grid operator:

- Equipment maintainers that may have need to take periodic control during repair actions
- CAISO may provide competing market incentives
- Acts of God

In the CA Rule 21/SIWG community, there is an implicit assumption that Rule 21 controls should take precedence over other signals or user preferences, but is this assumption correct? For grid stability functions like the Volt/Watt and Frequency/Watt, there may be a good argument for them to take precedence over user preferences, but what about functions such as real and reactive power set point or simple curtailment? Here, there is an argument that the user should have a choice whether to opt-in or opt-out of these controls.

CA Rule 21 Does Not Address Interaction with the Independent System Operator

Given the implicit assumption of total control by the utility grid operator, IEEE 2030.5/CSIP standard does not consider the possibility of DER interaction with the CAISO. Lacking this capability, asset owners are forced to integrate separate CAISO control networks on a customized basis, adding both cost and technical/operational risk.

Additional Technical Refinement is Required

Although all CA Rule 21 functions that were tested worked as intended, the inverter vendor misinterpreted some requirements (e.g., how many points were needed for a specific curve, what are the allowed values of curve points) that had to be corrected in the smart inverter SunSpec Modbus interface. When this misinterpretation was identified and fixed, the functions behaved as expected.
RECOMMENDATIONS
Based upon results of this field trial, we recommend the following actions:

Determine the Level of Asset Availability Required for DER Networks
As shown in this field trial, “best efforts” networks deliver “best efforts” results. In numeric terms, this means that grid operators must cope with the fact that up to 33% of all DER assets in their networks will be unavailable to receive operational signals at any given time.

If non-deterministic network behavior, and therefore DER system availability, is acceptable, additional modeling and research is needed to determine the normal availability of unmanaged networks in practice.

If deterministic network behavior is required, quality of service (uptime, latency, throughput) of the physical network must be specified and funding must be identified to pay for the service.

Modify CA Rule 21 To Incorporate IEEE 1547-2018 Communication Requirements
The IEEE 1547-2018 standard specifies that all DER systems must present at least one standard communication interface. The standard interfaces are SunSpec Modbus, IEEE 2030.5, and IEEE 1815. Requiring standards compliance at the DER will eliminate the biggest source of ambiguity in the CA Rule 21 compliance process, decrease the opportunity for error, and result in more reliable, functional, and interchangeable DER networks.

Develop a Dynamic Opt-In/Opt-Out Program for Asset Participation in Grid Control
Irrespective of CA Rule 21, consumers naturally express preferences and implement policies with their DER systems. CA Rule 21 should formally recognize this fact and take steps to address it.

A network interface that supports Rule 21 controls, third-party controls, and user preferences is desirable. The IEEE 2030.5 protocol offers capabilities that can be used for this purpose including Opt-In/Opt-Out functionality. For every DER control, the DER can send an Opt-Out or Opt-In message to the server indicating whether the DER will participate in the control action. This function is designed to allow the end user, based on his/her preferences, to indicate whether to participate. Some DER controls affect grid stability. In this case, user must not be allowed to Opt-Out, so there must be a mechanism to prioritize actions and enforce this policy.

Investigate the Use of Primacy to Facilitate Third-Party Interaction
One available method in IEEE 2030.5/CSIP to prioritize actions is to use the primacy attribute associated with a given control function. In IEEE 2030.5, the primacy attribute is an 8-bit number indicating its relative priority level. For critical DER controls that affect grid stability, the utility can set its primacy to a high priority level. For less critical controls, the utility can set its primacy to a lower priority. The DER can be configured to only Opt-Out of lower priority controls.

For third-party (e.g. CAISO) controls, the DER can be programmed to assign a primacy value to the control and then use that value to determine whether the third-party control signal has priority over utility controls and/or user preferences.
SECTION | Approach

Set a Proficiency Standard for Installers Involved in Network Commissioning

The current proficiency requirement for DER system installers is that they must be licensed electricians. This requirement was practical when the scope of the job was to install and commission electrical equipment but falls short in an era when secure data communication must also be established between DER and the utility. At a minimum, we recommend that proficiency requirements be established for installers performing these actions:

- Verify connectivity from the DER to the internet
- Verify connectivity from the DER to the Aggregator or utility server
- Verify data transfer to/from the DER and the Aggregator and/or utility server
- Verify and document customer preferences and local overrides

Specify and Standardize the Utility Provisioning Process

The utility DER provisioning process for IEEE 2030.5/CSIP is dependent upon the server implementation and tailored to “one at a time” activity. We recommend that DER system requirements for utility provisioning be refined and that a method for batch processing commissioning requests be developed.

Set Standard Requirements for Utility-Server-to-Aggregator Integration

It can be expected that all utility networks will have DMZ’s. DMZ’s are not specified in the IEEE 2030.5 standard and the CSIP says little about them. In order to minimize friction and cost, while maintaining high levels of security, we recommend that CSIP be improved to standardize the components of a utility DMZ and the interface presented by the DMZ to the aggregator.

In addition, we recommend that contracting terms between utilities and aggregators be standardized. Doing so will help ensure that a sufficient number or aggregators are available to serve the market in the event of business volatility or other unforeseen events.

Confirm Efficacy of Remaining CA Rule 21 Controls

As noted, the following functions were not exercised in this field trial:

- Fixed Power Factor (Rule 21 – Phase 1)
- Ramp Rates (Rule 21 – Phase 1)
- Ride-Through Curves (Rule 21 – Phase 1)
- Connect/Disconnect (Rule 21 – Phase 3)

Care should be taken to confirm that other EPIC-funded projects have covered these operational cases.

Establish a Process of Continuous Improvement

The current revision of CA Rule 21 represents a paradigm shift for the DER industry. Not only were smart inverters, with brand new electrical function capabilities, added to the mix, but so was the requirement for secure data communication to every system. Given the nature of what was added (i.e. intelligent devices driven by software communicating continuously), it is unrealistic to expect that every aspect of the system will work flawlessly forever and without modification. If we’ve learned anything about computing and networking, it is that change is a constant that must be addressed.

In order to address this dynamic, we recommend that a process for continuous improvement be established by the CPUC to address the myriad aspects of the system. Activities to be considered in this program include software change control, security policy changes, disaster preparedness, defect tracking, interoperability improvement, commissioning process automation, real-time testing, human factors, and others. The SunSpec Alliance welcomes the opportunity to continue contributing to this important endeavor.
IV. Demonstrate and Evaluate the Impact of Coordinated DER Asset Participation in Demand Response Markets

GOALS
The goals of this phase of the project were to
1. demonstrate cost savings of 10% for California Clean Energy stakeholders;
2. identify new revenue models for DER investors and operators; and
3. conduct a value proposition analysis including an assessment of ratepayer impacts.

DERs in Retail Markets

CA Rule 21
CA Rule 21 describes a framework for retail market participation by DERs, in terms of interconnection, operating, and metering requirements. Rule 21 was established to allow utilities to utilize DERs for grid stability, allowing the control of DERs for frequency regulation and Volt-VAR at the retail level by dispatching or curtailing participating DER assets.

In particular, Rule 21 prescribes seven autonomous functions that smart inverter DERs must be able to perform, as well as communication, monitoring, and control between DERs and the utility, using the IEEE 2030.5 communications protocol. The Common Smart Inverter Profile (CSIP) details how IEEE 2030.5 can be implemented to satisfy the Rule 21 requirements24.

This section describes how the functionality described in CSIP, and therefore proscribed by Rule 21, allows DERs to participate in retail markets.

Common Smart Inverter Profile (CSIP)
CSIP describes the group management capability of IEEE 2030.5 by applying it to DERs according to their location on the grid. This creates a network of resources, allowing for groupings of DERs at various levels of granularity. For example, in Figure 7, the node A1-B1-C1 could be used to create a tariff for DERs behind the given substation, while an individual inverter could be accessed with the node A1-B1-C1-D1-E1-F1-G2.

24 Common Smart Inverter Profile Working Group 2018.
Other groupings are also available outside of the network topology. The framework described in CSIP allows for free association of DER assets, as long as they are connected to the utility.

CSIP also describes monitoring and control of each DER asset or grouping, including real and reactive power, frequency, voltage per phase, voltage/frequency ride through, and the operating state of each asset. In IEEE 2030.5, these are mapped to specific functions (“Grid DER Support Functions” in CSIP). These functions allow a utility operator to control DERs and groups of DERS based on setpoints and operating curves. Each DER can be controlled by the utility operator via an “event”, which includes the start time, the duration of an event, and the IEEE 2030.5 function and value. For example, an event could consist of the following information: 6am start time, 2 hours duration, `opModFixedFlow` of 5kW, which would correspond to a two-hour dispatch of 5kW starting at 6am. CSIP also establishes a protocol for event priority called “primacy”, allowing higher-priority events to supersede and effectively halt or prevent the DER from responding to a lower-priority event. This is described in CSIP Section 7.10 Event Prioritization. Table 1 gives a summary of relevant functions by their IEEE 2030.5 function name and their operational purpose as Grid DER Support Functions.

IEEE 2030.5 Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Grid DER Support Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>opModFixedFlow</td>
<td>Active Power setpoint</td>
</tr>
<tr>
<td>opModFixedPF</td>
<td>Power Factor setpoint</td>
</tr>
<tr>
<td>opModFixedW</td>
<td>Active Power setpoint (in percentage of maximum active power in Watts)</td>
</tr>
<tr>
<td>opModFixedVar</td>
<td>Reactive Power setpoint</td>
</tr>
<tr>
<td>opModVoltVar</td>
<td>Volt-VAR operating curve</td>
</tr>
<tr>
<td>opModVoltWatt</td>
<td>Volt-Watt operating curve</td>
</tr>
<tr>
<td>opModFreqWatt</td>
<td>Frequency-Watt operating curve</td>
</tr>
</tbody>
</table>

Table 1: IEEE 2030.5 Functions with Corresponding Grid DER Support Functions

CSIP also requires that DERs report monitoring data and operational characteristics, such as Real (Active) Power (W), Reactive Power (VAR), Frequency (Hz), Voltage per Phase (V), and Operational Energy Storage Capacity (kWh). Along with the IEEE 2030.5 functions and grouping, utility operators are able to properly manage and control DERs to perform grid services on the retail market. Table 2 lists retail use cases with comparisons to IEEE 2030.5 functions that can be used to satisfy those use cases.

Use Case

<table>
<thead>
<tr>
<th>Use Case</th>
<th>Description</th>
<th>IEEE 2030.5 Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration and Grouping</td>
<td>Static groups for targeted controls</td>
<td>-</td>
</tr>
<tr>
<td>Voltage Reduction Support</td>
<td>Reactive Power Modes - volt-var, fixed power factor, set VARs</td>
<td>opModVoltVar, opModFixedPF, opModFixedVar</td>
</tr>
<tr>
<td>Net Load Reduction</td>
<td>Real Power Modes - battery charge/discharge, load curtailment</td>
<td>opModFixedFlow, opModFixedW</td>
</tr>
<tr>
<td>Curtailment based on Reverse Power Flow</td>
<td>Real Power Modes - battery charge/discharge, PV curtailment, volt-watt</td>
<td>opModFixedFlow, opModFixedW, opModVoltWatt</td>
</tr>
<tr>
<td>Autonomous Frequency Response</td>
<td>Frequency Support Mode - frequency-watt</td>
<td>opModFreqWatt</td>
</tr>
</tbody>
</table>

Table 2: Comparing Retail Market Use Cases with IEEE 2030.5 Functions

Finally, CSIP describes the security standards inherent in IEEE 2030.5. Specifically, communications are based on the HTTPS protocol, with mandated encryption, authentication, and authorization protocols between each DER and the utility head-end server.
CHALLENGES WITH CURRENT WHOLESALE MARKET

Given their growing capacity, DERs have great potential to provide value beyond the retail market. However, at present there is a lack of participation of DERs in the wholesale market. Instead, DER participation on the grid is limited to the retail market to offset local loads as BTM resources. The current market is not conducive to simultaneous participation in both retail and wholesale energy markets. This issue has been a concern for the Energy Commission and California ISO for many years, but little headway has been made.\(^{26}\)

A recent Energy Commission report, examining the Los Angeles Air Force Base Vehicle-to-Grid Demonstration (Air Force Report), identified many of the current challenges that DERs face when attempting to participate in California ISO.\(^{27}\) One specific challenge identified in the Air Force Report was proving the profitability of DER services when operating under differing retail and wholesale tariff structures. The limited success of these attempts has led California ISO to conclude that wholesale participation by DERs is not economically viable.

RECOMMENDATIONS AND CONCLUSIONS

Recommendations

The harmonization of the retail and wholesale tariffs and communications will require continued and expanded collaboration from stakeholders. The following recommendations are intended to provide incremental progress towards more compatible tariffs and communication protocols.

Revise Tariffs to Provide Significant Increases in DER Value Propositions

First, revising tariffs that would provide significant increases in DER value propositions should be considered. For example, since Rule 21 limits the size of DER installations to match local peak load, the CPUC could investigate the possibility of increasing the size limits of DER systems beyond local load. Doing so would enable DERs to better address California ISO needs and improve the profitability of suitable projects. Altering the sizing limits may require the presence of energy storage in order to manage export limits. Allowing DERs to provide capacity greater than local peak load would increase the value proposition that DERs could provide to wholesale market and potentially the retail market. California ISO interconnection rules could also be revised such that every DER could be automatically interconnected with California ISO, irrespective of whether the DER has a current contract with California ISO to sell wholesale ancillary services.

NREL studied the development of DER virtual power plants (VPPs) across five projects, and evaluated the efficacy of each.\(^{28}\) Common challenges shared by the projects included communicating and controlling DERs to form a VPP, as well as problems with participation rates, permitting, and interconnection. The study recommendations included tariff reform to incentivize DER owners to participate in VPPs, and explicitly mentions IEEE 2030.5 as a potential platform for DER aggregation development, noting that “widespread adoption of similar open or standardized communication protocols may reduce the time and resources needed to develop and implement a DER aggregation program.”\(^{29}\)

Given the current lack of economically viable wholesale market opportunities for DERs, tariff redesign and communications standards are needed to standardize retail and wholesale requirements to better enable DER transactions.

28 Cook et al. 2018.

SECTION

Approach

Create Harmonized Protocol for DER Communication in Retail and Wholesale Markets

Second, in order to start the process of harmonizing communication between the two markets, the CPUC could initiate a joint study with California ISO to use IEEE 2030.5 grouping and primacy to simultaneously address CA Rule 21 and California ISO technical and policy requirements. The CPUC and California ISO can then create a shared protocol for DER communication and operation between the retail and wholesale market operators.

Explore Integration of DNP3 into CSIP Defined IEEE 2030.5 Aggregator Software

Finally, another possible solution involves integrating DNP3 into the IEEE 2030.5-based aggregator software defined in CSIP. As DNP3 and IEEE 2030.5 are semantically compatible, the functions used in DNP3 (as implemented by the California ISO BPMDT) can be mapped to IEEE 2030.5 functions. SunSpec has already begun work on harmonizing DNP3 and IEEE 2030.5 with its own specifications, and this work can be extended to include a DNP3 interface for IEEE 2030.5 in the CSIP framework. Aggregated groups of DER assets on the wholesale market manifests as a Virtual Power Plants (VPPs). With this integration, one could use the grouping function of IEEE 2030.5 to form VPPs, and DNP3 to facilitate interaction between VPPs and California ISO.

Conclusion

Existing DER Communications Protocol in the Retail Market can be Applied to a Framework to Support Deployment of DERs onto the Wholesale Market

DERs are a growing presence on the electric grid. In the retail market, Rule 21 and CSIP take advantage of communications protocols, such as IEEE 2030.5, to enable utilities to aggregate, monitor, and dispatch DERs to support grid services. However, as controllable sources of power, DERs have the potential to participate in both retail and wholesale markets.

This report demonstrates that the existing protocol for DER communications in the retail market can also be applied to a framework which supports the deployment of DERs onto the wholesale market. These two markets can also be unified under IEEE 2030.5 to provide a comprehensive communications network, under which DERs can simultaneously participate in both retail and wholesale market operations. Ultimately, utilities and ISOs must work together to determine best practices for DER operation, by harmonizing DER tariffs and communications across retail and wholesale markets.

30 SunSpec Alliance 2018.
V. Smart Inverter Value Proposition Analysis

The SunSpec Alliance project team worked with Strategen Consulting in this analysis and benefits modeling phase of the project.

OBJECTIVES

The objectives of this phase of project included:

- Identify the potential benefit streams, including benefits to the end customers, utilities, and local and system-wide benefits to the grid/ratepayers.
- Categorize the operational modes of the system components to provide the potential benefits.
- List the required data inputs and outputs for the value proposition analysis.
- Prioritize the primary benefits for the detailed value proposition analysis.
- Summarized data inputs identified in the value proposition framework.
- Setup the use cases and corresponding data inputs in the appropriate models, which will include Strategen’s proprietary customer-sited optimization model and Electric Power Research Institute’s Energy Storage Evaluation Tool.
- Summarize modeling runs for the use cases based on the categories of operational modes identified in the framework above.
- Collect key output data from the model(s), including key metrics to understand the value proposition from the perspectives of the host, end customers, investors, utilities, and the grid.
- Apply cost effectiveness tests, using the modeling output data above, including but not limited to Total Resource Cost (TRC).
- Utilize the value proposition modeling and cost effectiveness testing to validate the impacts and benefits for California ratepayers.

SMART INVERTER VALUE PROPOSITION ANALYSIS METHODOLOGY

Smart Inverters, combined with standardized communication protocols, allow for a new class of resources on the grid that are controllable and highly responsive. Increasing the number of Smart Inverters on the grid allows for grid support on both a local and regional scale, beyond what can be maintained or managed with traditional resources. These additional functions, both autonomous and controlled, will enable ratepayers and DER owners to access additional value streams.

In order to assess the value of Smart Inverters and their capabilities, a value proposition analysis model was created. This analysis methodology is based on the prior California Energy Commission funded work on Distribution Automation (DA) impacts (Navigant, 2009)\(^31\). The DA report analysis was utilized as a framework to evaluate the benefits of Smart Inverters to the utility, customers, and society at large. The high-level quantification of Smart Inverter benefits was based on a combination of published data, data from the previous Navigant report, and professional assumptions. The authors identified sensitive inputs and varied them to create a range of expected benefits.

This framework includes a suite of Application Concepts (ACs), which will be used to represent state and utility goals. Each AC requires a set of Functions to implement. In other words, ACs represent the grid operational improvements, and Functions represent the device capabilities. Each Function is further responsible for series of Benefits with discrete dollar-per-unit amounts. In short, ACs can be linked to Benefits via the Functions that are implied by both.

The focus here is narrowed to benefit analysis related to Smart Inverters, rather than the broader Distribution Automation concept introduced in the DA report. The analysis intends to capture the Application Concepts, Functions, and Benefits achieved solely due to the advancements in Smart Inverters achieved and demonstrated during this project.

Narrowing the focus to Smart Inverters also required two scenarios to be developed. Scenarios were necessary because Smart Inverters create benefits through their own functions, but they also unlock the potential for DERs to provide benefits. For example, increasing penetrations beyond 15% of peak load on a distribution feeder unlocks the potential to create additional services on the feeder and potentially more cost-effectively achieve policy goals.

The Current State of the DER Market is used as the baseline for the model. To create the Future State of the DER Market, known policy goals related PV and energy storage were integrated32. This is considered to be a conservative estimate for the benefits that DERs will provide given that these goals could be accomplished by 2024, and the state will still have a long way to go before reaching its goal of 100% clean energy.

Application Concepts

The capabilities of Smart Inverters to autonomously manage power quality, monitor and control distributed energy resources, and act in aggregate enable the following Application Concepts:

Improve Grid Stability and Operations:
Autonomous/controlled participation to handle abnormal voltage/frequency conditions and grid outages.

Enable Non-Wires Solutions for a Changing Grid:
Handling increased renewable energy generating capacity and additional customer load via management of Smart Inverter DER assets.

Enable DER Participation in Wholesale Markets:
Establishing operational and communications standards for DERs to participate in retail and wholesale demand response markets.

Functions

The functions of Smart Inverters are a subset of the original Distribution Automation functions defined in the Navigant report. The following functions in are included in this analysis:

Automatic Voltage and VAr Control:
Autonomous Volt-VAr33, Freq-Watt34, Volt-Watt operating curves; voltage ride-through (IEEE 1547 compliance).

DER Monitoring: Real-time status and output data from an individual DER or aggregated groups of DERs.

DER Control by Unit: Control of an individual DER by utility or third-party operators (“Scenario 1: Direct DER Communications” under CSIP35).

DER Control by Class: Control of multiple DERs by an aggregator to achieve grid-wide functions such as Conservation Voltage Reduction as a Virtual Power Plant (VPP) (“Scenario 2: Aggregator-Mediated Communications” under CSIP).

Automatic Islanding and Resynchronization:
Autonomous handling of grid outage conditions to cease operation under unsafe conditions and resume operation only when safe.

Real-Time Communications from the Utility to the Customer: Utility signals for market participation by Smart Inverters.

32 For example, AB 2514 includes 200 MW of customer-sited storage, while AB 2868 mandates an additional 500 MW of behind-the-meter storage.

33 https://www.nrel.gov/docs/fy19osti/72298.pdf

34 https://www.nrel.gov/docs/fy17osti/68884.pdf

35 https://sunspec.org/download/
Benefits
The original Benefit categories for Distribution Automation are well-representative of Smart Inverter benefits, with some adjustments to account for Smart Inverter capabilities. The following benefits are calculated and reported in this analysis. The values calculated accrue to the general customer population at large on an annual basis. While the benefits are not intended to be discrete, and therefore may be related and overlap, the research team purposely omitted benefits that are almost entirely duplicative, such as the benefit of bill reduction that are reflected through avoided wholesale and infrastructure costs.

There is considerable overlap between the Smart Inverter benefits described below, and those resulting from DERs in general. However, as Smart Inverters enable 100% DER penetration, and are indeed required of DER generation in current policy, these benefits cannot be decoupled from each other.

- **Reliability**
 A reduction in the number and duration of sustained outages results in faster service restoration, fewer affected customers, and reduced utility costs. Smart Inverters create benefits that arise from Automatic Islanding and Resynchronization. For this reason, the proliferation of the benefits created through microgrids is reflected through this benefit calculation.

- **Power Quality**
 A reduction in harmonic distortion, fewer and less severe voltage sags and surges, causes less damage to equipment and lost production. This includes Volt-Var, Freq-Watt, Volt-Watt autonomous regulation (i.e. following a Volt-Var curve), as well as deliberate control of Smart Inverters to inject or absorb real/reactive power on the grid.

- **Energy Delivery Efficiency**
 A reduction in peak demand and energy losses results from optimized control of grid-wide operation, including such methods as Volt-Var optimization (VVO) and Conservation Voltage Reduction (CVR).

- **Dispatchable Resources**
 A reduction in reserve margin requirements results from higher DER penetration and the use of DERs replacing peaker plants as a dispatchable resource for capacity markets and ancillary services.

- **Avoided and Deferred Transmission and Distribution (T&D) Upgrades**
 A reduction in carrying costs based on avoided capital expenditures, including using inverters as their own production meters, results from higher utilization of T&D and substation capacity and extended equipment life.

36 While some benefits may first accrue to the utility, such as avoided and deferred T&D upgrades, eventually the decreased costs would flow to customers through rate case proceedings. In addition, not all values flow equally to all customers, such as reliability values that accrue in larger portions to commercial and industrial customers.

37 The benefits that microgrids may create is not entirely and solely captured within this benefit calculation.

38 https://www.nrel.gov/docs/fy17osti/67296.pdf

Application Concepts Matrix

The Application Concepts Matrix describes each Application Concept in terms of the Smart Inverter Functions which are associated with it. For a given Application Concept, if a Function enables it, the matrix entry is labelled, “●”. Otherwise (i.e. if Application Concept and Function are not related), the entry is blank.

SMART INVERTER VALUE PROPOSITION ANALYSIS APPLICATIONS CONCEPT MATRIX

<table>
<thead>
<tr>
<th>Functions</th>
<th>Improve Grid Stability and Operations</th>
<th>Enable Non-Wires Solutions for a Changing Grid</th>
<th>Enable DER Participation in Wholesale Markets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Voltage and VAr Control</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>DER Monitoring</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>DER Control by Unit</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>DER Control by Class</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Automatic Islanding and Resynchronization</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real-Time Communication from Utility to Customer</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Smart Inverter Value Proposition Analysis Applications Concept Matrix
Benefits Matrix
The Benefits Matrix is very similar to the Application Concepts Matrix, in that each Benefit is described in terms of the Functions which contribute to and enable that Benefit. The matrix is labelled in a similar manner to the Application Concepts Matrix.

SMART INVERTER VALUE PROPOSITION ANALYSIS
BENEFITS MATRIX

<table>
<thead>
<tr>
<th>Functions</th>
<th>Reliability</th>
<th>Power Quality</th>
<th>Energy Delivery Efficiency</th>
<th>Dispatchable Resources</th>
<th>Avoided and Deferred T&D Upgrades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Voltage and VAr Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DER Monitoring</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>DER Control by Unit</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>DER Control by Class</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Automatic Islanding and Resynchronization</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real-Time Communication from Utility to Customer</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
</tbody>
</table>

Table 4: Smart Inverter Value Proposition Analysis Benefits Matrix
Key Finding
Smart Inverter Value Proposition Analysis Shows $640 Million to $1.4 Billion Annually

The resulting Smart Inverter Value Proposition Analysis shows a value of $640 million to $1.4 billion per year due to the benefits of Smart Inverters and is comprised of the improvements in these areas.

SMART INVERTER VALUE PROPOSITION ANALYSIS SUMMARY

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Low Case</th>
<th>High Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability</td>
<td>$290,000,000</td>
<td>$660,000,000</td>
</tr>
<tr>
<td>Power Quality</td>
<td>$30,000,000</td>
<td>$100,000,000</td>
</tr>
<tr>
<td>Energy Delivery Efficiency</td>
<td>$30,000,000</td>
<td>$70,000,000</td>
</tr>
<tr>
<td>Dispatchable Resources</td>
<td>$270,000,000</td>
<td>$530,000,000</td>
</tr>
<tr>
<td>Avoided/Deferred T&D Upgrades</td>
<td>$20,000,000</td>
<td>$70,000,000</td>
</tr>
<tr>
<td>Total</td>
<td>$640,000,000</td>
<td>$1,430,000,000</td>
</tr>
</tbody>
</table>

Summary table of Value Proposition Analysis results. Dollar values rounded to the nearest $10MM.

Table 5: Smart Inverter Value Proposition Analysis Summary

This study is published with an accompanying spreadsheet, available from SunSpec.org, to enable others to evaluate the methodology and apply it to their work.

40 https://www.sunspec.org
VI. Outreach and Education

SPECIFICATIONS AND RELATED DOCUMENTS

The specifications and related documents delivered by this program (IEEE 2030.5 application note, the Protocol Information Conformance Statement (PICS), and the IEEE 2030.5 test process logic document) will be offered royalty-free under the MIT open source license. The SunSpec Alliance offers these documents from its website.

SunSpec Specifications & Information Models:
https://sunspec.org/download/

MARKET OUTREACH SUMMARY

The knowledge gained from the project has been and will continue to be made available to inverter and Distributed Energy Resource manufacturers, aggregators, end users, utilities, regulatory agencies, and other members of the public via SunSpec Alliance distribution channels including website, newsletters, educational events, media outreach and promotional events.

SunSpec developed and implemented a suite of programs and seminars to disseminate knowledge about Smart Inverters, DER data communication, and the CA Rule 21 roll out. Components of this program included industry events; media outreach and articles; LinkedIn digital advertising, email and social media outreach, university- accredited education programs; and informational webinars.

In September 2018, SunSpec held the Gridvolution conference, an affiliated event at the Global Climate Action Summit. The event attracted 65 attendees and featured speakers from 17 companies, allowing collaboration and learning between DER stakeholders working to digitize information and interoperability of energy assets.

CA RULE 21 EDUCATION PROGRAM

SunSpec established a CA Rule 21 education program, which includes a technical track and executive track. This program was developed in conjunction with the University of California San Diego (UCSD), QualityLogic, and Kitu Systems. All courses are promoted by email, web postings, and social media, and in the UCSD Extension course catalog.

The Rule 21 technical training course was lauded as “one of most successful market transitions from lab to curriculum” in UCSD history, by Byron Washom, the director of the Strategic Energy Initiatives program at UCSD. The 9-module online course was offered in the fall of 2018 with 17 students and again in winter of 2018-2019, with the headcount nearly doubling to 31 students. The course will be offered again in the spring and fall terms of 2019.

41 Technology Transfer Report for CEC-1 EPC-14-036 Project
42 https://sunspec.org/gridvolution/
44 https://sunspec.org/sunspec-california-rule-21-educational-program/
The Rule 21 executive workshops were similarly successful, with over 110 solar and DER executives participating in this training track. This track was initiated in March 2018, and has included training workshops conducted at Intersolar North America46, Solar Power International47, and UCSD48.

After the initial CA Rule 21 Executive Workshop in March 2018, SunSpec hired an industry marketing group to conduct interviews of workshop attendees. Attendees outlined why the training was important to their understanding and implementation of CA Rule 21. Executives gave feedback on the workshop format and content, with resulting testimonials used for promotion of the program including LinkedIn advertising and overall promotional messaging.

Audience profiling work was done by the SunSpec team including survey of the fall 2018 students. This work led to profiling of three key customer types, messaging to reach them and impacted promotional outreach.

The three key customer types for the CA Rule 21 Technical curriculum include:

- Electrical Engineer
- Software Engineer
- Grid Planning Executives

SunSpec and Sandia hosted a cybersecurity webinar in December 2018 with nearly 200 registrations. The webinar covered the security requirements of IEEE 2030.5 and how they apply to California DER networks, as well as topics in cryptography, credential management, revocation, the general concept of trust chains, and global supply chain implications49.

These courses, workshops, and events are crucial for the development of Smart Inverters going forward. They allow for the spread of knowledge acquired and experience gained during the term of this project and encourage further collaboration and discussion amongst the Smart Inverter industry.

46 https://sunspec.org/executive-track-california-rule-21-market-opportunity-executives-2/
47 https://sunspec.org/sunspec-alliance-annual-member-meeting-digital-energy-summit/
48 https://sunspec.org/california-rule-21-market-opportunity-executives/
49 https://sunspec.org/cybersecurity-webinar-securing-california-rule-21-networks/
RESULTS

This project resulted in many significant achievements in Smart Inverter research, conformance testing, standardization, cybersecurity, and education.

Smart Inverters Enable 100%+ Penetration of DER

This project successfully demonstrated that Smart Inverters can enable DER penetration of more than 100% of peak instantaneous distribution circuit load. This success is validated by the report titled “Smart Inverter Performance Testing to UL 1741 SA and CA Rule 21 Criteria: Results from the UC San Diego Smart Inverter Laboratory,” “Smart Inverters for High PV Penetration: Analysis of functionality and behavior,” and the “SunSpec 2030.5/CSIP Field Trial Results Report.” These results are additionally supported by the “Integration of Big Data for Advanced Automated Customer Load Management” report by SCE.

This result shatters the 15% DER ceiling currently enforced by utilities across the country within the IEEE 1547 standard guidelines. It also enables achievement of California energy policy goals described in SB 100, along with other benefits which provide statewide value including reduced greenhouse gas emissions, improved air quality, enhanced consumer choice, and the spread of renewable energy and electric vehicles within marginalized communities.

50 Lloyd Cibulka, Bob Fox, Tom Tansy, Suzanne Martinez, Jan Kleissl. (University of California San Diego). 2018. Smart Inverter Performance Testing To UL 1741 SA and CA Rule 21 Criteria: Results From the UC San Diego Smart Inverter Laboratory. California Energy Commission.

Smart Inverter Value Proposition Analysis Results

Smart Inverters, combined with standardized communication protocols, establish a new class of resources on the grid that are controllable and highly responsive. Increasing the number of Smart Inverters allows for grid support on both a local and regional scale, beyond what can be maintained or managed with traditional resources. Smart Inverter functions, both autonomous and controlled, enable ratepayers, DER owners, and stakeholder to access new value streams.

To assess the value of Smart Inverters and their capabilities, the project developed a value proposition analysis model. This model is available for inspection and review in the document titled “Smart Inverter Value Proposition Analysis Spreadsheet" and described in the report titled “Networked DER Value Proposition Report.”

The analysis methodology for the model is based on the prior California Energy Commission funded work on Distribution Automation (DA) impacts (Navigant, 2009). The project used the DA report analysis as a framework to evaluate the benefits of Smart Inverters to the utility, customers, and society at large. The high-level quantification of Smart Inverter benefits was based on a combination of published data, data from the previous Navigant report, and professional assumptions. The authors identified sensitive inputs and varied them to create a range of expected benefits.

This analysis shows a value of $640 million to $1.4 billion per year due to the benefits of Smart Inverters and is comprised of the improvements in the areas of reliability, power quality, energy delivery efficiency, dispatchable resources, and avoided or deferred transmission and distribution upgrades. A breakdown of savings by type is shown in the table below.

SMART INVERTER VALUE PROPOSITION ANALYSIS SUMMARY

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Low Case</th>
<th>High Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability</td>
<td>$290,000,000</td>
<td>$660,000,000</td>
</tr>
<tr>
<td>Power Quality</td>
<td>$30,000,000</td>
<td>$100,000,000</td>
</tr>
<tr>
<td>Energy Delivery Efficiency</td>
<td>$30,000,000</td>
<td>$70,000,000</td>
</tr>
<tr>
<td>Dispatchable Resources</td>
<td>$270,000,000</td>
<td>$530,000,000</td>
</tr>
<tr>
<td>Avoided/Deferred T&D Upgrades</td>
<td>$20,000,000</td>
<td>$70,000,000</td>
</tr>
<tr>
<td>Total</td>
<td>640,000,000</td>
<td>1,430,000,000</td>
</tr>
</tbody>
</table>

Summary table of Value Proposition Analysis results. Dollar values rounded to the nearest $10MM.

Table 5: Smart Inverter Value Proposition Analysis Summary

These benefits are due to the enhanced operation and improved performance of the grid by Smart Inverters, as well as avoided energy losses and grid upgrade costs. The benefits are a result of analyzing the California energy policy goals and the capabilities and functions of Smart Inverters.
CA Rule 21 Technical Specifications and Test Criteria

CA Rule 21 defines a framework for retail market participation by DER, for interconnection, operating, and metering requirements. The current revision of Rule 21 was made to allow utilities to utilize DER to support grid stability, allowing the control of DER for frequency and Volt-VAr regulation at the retail level by dispatching or curtailing participating DER assets.

SunSpec Alliance led the design of key technical specifications to ensure that Smart Inverters achieve full capability and usage within CA Rule 21. SunSpec operates working groups to maintain and update these documents, which are published, open and royalty-free, on the SunSpec web site.

COMMON SMART INVERTER PROFILE

SunSpec Alliance, working with industry and utility participants, was a key contributor to the development of the Common Smart Inverter Profile (CSIP)57. This document is an implementation guide for IEEE 2030.5-2018 as applied to Rule 21, now hosted on the SunSpec website. CSIP allows manufacturers, DER operators, system integrators, and DER aggregators to properly design products and systems that are Rule 21 compliant, enabling Smart Inverters to perform the full extent of Rule 21 capabilities.

Figure 8. CSIP: Network Configuration & Scope

OPEN TEST PROCEDURE FOR IEEE 2030.5/CSIP

SunSpec Alliance developed the SunSpec Common Smart Inverter Profile (CSIP) Conformance Test Procedures, an open, royalty-free document that describes how to validate Smart Inverters for adherence to Rule 21 requirements for compliance to the IEEE 2030.5-2018 standard as described in the Common Smart Inverter Profile. The EPC-14-0336 project funded development of Rule 21 Phase 1 test procedures, including tests for autonomous function behavior and communication interface settings support.

Smart Inverter Communication Go-To-Market Platform

SunSpec developed and established a low-cost means for Smart Inverter manufacturers to test hardware for compliance with Rule 21. This work was funded by the project and includes:

- An open Smart Inverter test lab specification, used in the UCSD Smart Inverter test lab.
- Open test scripts for IEEE 2030.5/CSIP client and SunSpec Modbus protocol conformance.
- Updates to SunSpec System Validation Platform (SVP) to automate test scripts.

This work provides a framework for manufacturers to build testing laboratories with the necessary hardware and software components for Rule 21 compliance testing, and allows any type of organization, including buyers or interested third parties, to establish their own facilities for evaluating Smart Inverters.

Confirmation of Smart Inverter CA Rule 21 Conformance

SunSpec tested and verified the conformance of Smart Inverter products from five manufacturers to Rule 21 specifications at the UCSD Smart Inverter test lab using the SunSpec platform. This work proves the individual inverters are Rule 21 conformant and demonstrates that any Rule 21 Smart Inverter can be exercised and evaluated, in a standard manner, for compliance to the standard using open source tools.

Influencing Relevant DER Source Standards

The development of the Rule 21 testing and conformance platform led to an understanding of how Smart Inverters should communicate. This understanding was used by SunSpec to inform and influence other standards and protocols with practical knowledge acquired during this development process. These include:

- Opening Project Action Request (PAR) and revising the IEEE 2030.5 standard to reflect lessons learned from this project, including updating the cybersecurity section.
- Successfully leading the effort to ratify IEEE 1547-2018 communication requirements.
- Managing updates to the SunSpec IEEE 2030.5/CSIP test procedure.
- Managing updates to the CSIP requirements document.
- Managing public reviews of test procedure and CSIP requirements document updates.
- Convening a workgroup to process inputs, drive workgroup consensus, and release update of compliance documents in concert with the Energy Commission and the CPUC.
- Updating SunSpec (Modbus) Models to reflect current CA Rule 21 requirements.

This broad, ongoing work in standardization ensures that Smart Inverters will follow a strict set of operational and communications protocols, facilitating the proliferation of networked DER systems compliant with Rule 21 requirements.

Improvements of Cybersecurity Practices and Infrastructure

Smart Inverters, as communicating devices, must necessarily implement and comply with cybersecurity standards. To investigate this topic, SunSpec launched the SunSpec/Sandia DER Cybersecurity Workgroup. This workgroup comprises approximately 350 professionals from the DER/cybersecurity industry, and includes stakeholders across the value chain. The workgroup has met consistently since 2017 and has published three best practices papers on the topic, all of which are available for free download from the SunSpec website63.

Consistent with the SunSpec/Sandia DER Cybersecurity Workgroup mission, the group promoted its first cybersecurity best practices document as the foundation of the UL 2900-2-2 specification (Software Cybersecurity for Network-Connectable Products, Part 2-2: Particular Requirements for Industrial Control Systems). This proposal was accepted by UL and the process of establishing the UL 2900-2-2 Standards Technical Panel commenced Feb 5, 2019. Kenneth Boyce, an engineering fellow with UL, is championing this effort, along with Jay Johnson, senior researcher at Sandia, and Tom Tansy of SunSpec. Key contributors include Danish Salem, researcher at NREL, and Cedric Carter, researcher at MITRE Corporation.

SunSpec, Sandia, and others jointly authored a scientific paper on issues associated with digital security and Public Key Infrastructure titled “Recommendations for Trust and Encryption in DER Interoperability Standards – SAND2019-149064.” This paper is foundational to understanding the DER cybersecurity topic and to evolving communication standards.

63 https://sunspec.org/sunspec-cybersecurity-workgroup/

Communication Interface Certification Program

To establish uniform performance criteria for communicating Smart Inverters, the SunSpec Alliance launched the SunSpec Certified program. This program utilizes a network of SunSpec Authorized Testing Laboratories, the SunSpec Common Smart Inverter Profile (CSIP) Conformance Test Procedures, a test results reporting standard\(^65\), and the SunSpec Public Key Infrastructure to establish a benchmark for the industry.

SunSpec has established a network of seven SunSpec Authorized Testing Laboratories\(^66\): five Nationally Recognized Testing Laboratories (NRTLs) capable of both IEEE 2030.5/CSIP communication testing and UL 1741 SA Smart Inverter electric function testing, as well as two testing laboratories that specialize in IEEE 2030.5/CSIP communication testing.

To easily identify Smart Inverter products that have successfully passed such testing, SunSpec also developed a SunSpec Certified branding and marking program for IEEE 2030.5/CSIP-conformant products. The SunSpec Certified program will soon feature a SunSpec product listing web service and API, based on the Orange Button\(^67\) taxonomy, to enable AHJs to publish customized product listings.

This service will allow AHJs, including the California Energy Commission, to maintain a database of approved Smart Inverter models that can be installed within the jurisdiction. The SunSpec product listing service can be easily updated as new Smart Inverters are approved and will ease the hardware selection process for developers within the jurisdiction.

66 https://sunspec.org/sunspec-certified-authorized-test-laboratories/

SunSpec Public Key Infrastructure (PKI)

SunSpec established the SunSpec Official PKI Program\(^68\) to provide security services for SunSpec Certified products and announced Kyrio as its official PKI provider.\(^69\)

This service is foundational to a California smart grid communication infrastructure that will integrate Smart Inverters, energy storage, and electric vehicles. It provides highly secure communications between DER systems, aggregators, and utilities, and is tailored to the needs of the industry.

\(^68\) https://sunspec.org/sunspec-public-key-infrastructure-pki-program/

\(^69\) https://sunspec.org/sunspec-alliance-announces-kyrio-official-pki-provider/
This project represents a four-year intensive investment of EPIC and in-kind industry support from educational institutions, smart inverter companies, utility and grid companies, research institutions and subject matter and domain experts.

Over the course of the project, from creation of the testing environment and tools, to inverter testing and reporting through field trials and market analysis, quantitative and qualitative benefits emerged impacting a broad range of California stakeholders.

Quantitative Benefits

Smart Inverter Value Proposition Analysis Shows $640 Million to $1.4 Billion Annually

By demonstrating that 100% DER grid penetration is possible, this project shatters the 15% DER ceiling currently enforced by utilities across the country within the IEEE 1547 standard guidelines. This report includes a Smart Inverter Value Proposition Analysis to quantify these benefits; the results of this analysis are presented below, showing value of $640 million to $1.4 billion due to Smart Inverters.

Smart Inverters, combined with standardized communication protocols, establish a new class of resources on the grid that are controllable and highly responsive. Increasing the number of Smart Inverters allows for grid support on both a local and regional scale, beyond what can be maintained or managed with traditional resources. Smart Inverter functions, both autonomous and controlled, enable ratepayers, DER owners, and stakeholder to access new value streams.

To assess the value of Smart Inverters and their capabilities, the project developed a value proposition analysis model. This model is available for inspection and review in the document titled “Smart Inverter Value Proposition Analysis Spreadsheet” and described in the report titled “Networked DER Value Proposition Report.”

The analysis methodology for the model is based on the prior California Energy Commission funded work on Distribution Automation (DA) impacts (Navigant, 2009). The project used the DA report analysis as a framework to evaluate the benefits of Smart Inverters to the utility, customers, and society at large. The high-level quantification of Smart Inverter benefits was based on a combination of published data, data from the previous Navigant report, and professional assumptions. The authors identified sensitive inputs and varied them to create a range of expected benefits.
This analysis shows a value of $640 million to $1.4 billion per year due to the benefits of Smart Inverters and is comprised of the improvements in the areas of reliability, power quality, energy delivery efficiency, dispatchable resources, and avoided or deferred transmission and distribution upgrades. A breakdown of savings by type is shown in the table below.

SMART INVERTER VALUE PROPOSITION ANALYSIS SUMMARY

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Low Case</th>
<th>High Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability</td>
<td>$290,000,000</td>
<td>$660,000,000</td>
</tr>
<tr>
<td>Power Quality</td>
<td>$30,000,000</td>
<td>$100,000,000</td>
</tr>
<tr>
<td>Energy Delivery Efficiency</td>
<td>$30,000,000</td>
<td>$70,000,000</td>
</tr>
<tr>
<td>Dispatchable Resources</td>
<td>$270,000,000</td>
<td>$530,000,000</td>
</tr>
<tr>
<td>Avoided/Deferred T&D Upgrades</td>
<td>$20,000,000</td>
<td>$70,000,000</td>
</tr>
<tr>
<td>Total</td>
<td>$640,000,000</td>
<td>$1,430,000,000</td>
</tr>
</tbody>
</table>

Summary table of Value Proposition Analysis results. Dollar values rounded to the nearest $10MM.

Table 5: Smart Inverter Value Proposition Analysis Summary

The values calculated accrue to the general customer population at large on an annual basis. While the benefits are not intended to be discrete, and therefore may be related and overlap, the calculation purposely omits benefits that are almost entirely duplicative, such as the benefit of bill reduction that are reflected through avoided wholesale and infrastructure costs.

We note that there is considerable overlap between the Smart Inverter benefits and those resulting from DER in general. However, as Smart Inverters enable 100% DER penetration, and are indeed required of DER generation in current policy, these benefits cannot be decoupled from each other.

152X Return on Investment to California Stakeholders

With $2 million funding from California and in-kind contributions of $2.2 million from industry ($4.2 million total), and assuming that the low end of the Value Proposition number ($640 million) is achieved, this project will return $152 to California stakeholders for every $1 invested by EPIC.

$500 Per System Savings Due to Standardization

With the availability of a standardized IEEE 2030.5/CSIP network approach validated, several areas of cost savings can be realized.

73 While some benefits may first accrue to the utility, such as avoided and deferred T&D upgrades, eventually the decreased costs would flow to customers through rate case proceedings. In addition, not all values flow equally to all customers, such as reliability values that accrue in larger portions to commercial and industrial customers.
SYSTEM REDESIGN COST REDUCTION

Every constructed DER system starts as a system design comprised of components specifically selected for that installation. Prior to the advent of smart inverters, inverter designs were considered unique, thus requiring special engineering consideration in each instance.

With smart inverters standardized, system designers are free to pick and choose amongst an array of manufactured products that are electrically and logically similar.

This similarity enables designers to pick smart inverters based on price, availability, or other factors—even after the system design is complete. Given a labor cost of $100 per hour and a redesign time requirement of two hours per design, about $200 can be saved in this process. Supply chain savings adds further economy.

Total estimated system redesign savings: $200.

NETWORK GATEWAY COST REDUCTION

Contemporary network gateways are comprised of off-the-shelf components and are often built by hand. With likely order volumes in the 100’s of thousands of units per year (California will install about 250,000 new smart inverter-based systems per year), residential gateway OEM’s that are currently paying $200 to $300 per unit for gateway compute devices can expect to save half that amount ($100 to $150 per unit) by going to “System On Chip” (“SOC”) designs.

Inverter OEM’s can count on saving another $25 to $50 per unit by embedding the gateway compute device in the inverter chassis and another $100 in installation labor (versus the cost of installing an external gateway).

Total estimated network gateway system savings: $200.

MONITORING/MANAGEMENT COST REDUCTION

Monitoring is a de facto requirement for commercial installations and a common feature of residential installations. Standardization dramatically reduces monitoring costs in both installation types.

Monitoring is typically sold as a bundle of proprietary monitoring equipment (i.e. network gateway and sensors) and proprietary portal software offered under an annual Software-As-A-Service agreement.

With IEEE 2030.5/CSIP networks required, telemetry can be delivered as a by-product of interconnection. This means that monitoring hardware, which is often priced at $500 for residential customers and up $5,000 for commercial installations is eliminated in many cases.

With telemetry now “free,” monitoring portals will naturally gravitate toward using that data service. This will result in monitoring companies competing with one another for existing installations—something that was virtually impossible with bundled hardware/software solutions—and new software entrants coming into the market.

Total estimated monitoring / management system savings: $100.

INTEROPERABILITY STANDARDIZATION LOWERS PV SYSTEM COST BY $500 PER SYSTEM

<table>
<thead>
<tr>
<th>Savings Description</th>
<th>Estimated Savings Per DER System from Interoperability Standardization</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Redesign Cost Reduction</td>
<td>$</td>
</tr>
<tr>
<td>Network Gateway Cost Reduction</td>
<td>$</td>
</tr>
<tr>
<td>Monitoring/Management Cost Reduction</td>
<td>$</td>
</tr>
<tr>
<td>Total Estimated Savings</td>
<td>$</td>
</tr>
</tbody>
</table>

Table 6: Interoperability Standardization Lowers PV System Cost by $500 per System
Qualitative Benefits

DER With Smart Inverters Support California Clean Energy and Environmental Initiatives

The project supports the California Energy Commission’s commitment to help the State of California reach its ambitious targets for transitioning the electric grid to renewable energy as part of state level action on climate change.

When the project was initiated in 2015, SB X 1 was the underlying renewable energy legislation. DER enabled by interoperable, Smart Inverters support California’s clean energy and environmental initiatives. Over the last five years, the state has enacted increasingly proactive mandates to reach 100% clean energy. Smart Inverters, by empowering 100% penetration of DER on the grid, supports these mandates.

The following is a chronological list of CA clean energy legislation positively impacted and supported by DER systems enabled by Smart Inverters:

2011 SB X 1-2: CALIFORNIA RENEWABLE ENERGY RESOURCES ACT

This bill, made official in 2011, obligates all California electricity providers to obtain at least 33% of their energy from renewable resources by the year 2020. It was considered the most aggressive renewable portfolio standard in the country74.

2016 CPUC DER ACTION PLAN

A range of actions to implement the plan were developed within three initiatives:

- Rates and Tariffs
- Distribution Grid Infrastructure, Planning, Interconnection and Procurement
- Wholesale DER Market Integration and Interconnection

The Commission sees value in DER and concludes its action plan with a commitment to develop market opportunities and remove barriers to DER.

74 http://www.leginfo.ca.gov/pub/11-12/bill/sen/sb_0001-0050/sbx1_2_cfa_20110214_141136_sen_comm.html
75 http://www.cpuc.ca.gov/General.aspx?id=6442458159
76 http://www.cpuc.ca.gov/Rule21/
2018 SB 100: THE 100 PERCENT CLEAN ENERGY ACT OF 2018

California’s Governor Jerry Brown hosted the Climate Action Summit in September 2018 to bring people from around the world to build on the commitments made in the Paris Agreement and take stronger action toward zero emissions by midcentury. To kick off the summit, Governor Brown signed SB 100, the 100 Percent Clean Energy Act of 2018\(^7\), which both accelerates the pace at which electricity providers in the state must achieve renewable energy goals and establishes a state policy to provide 100% clean energy by 2045. At the same time, Executive Order B-55-18 to Achieve Carbon Neutrality was signed, also with a 2045 target.

SB 100 outlines that:

- Eligible renewable energy resources and zero-carbon resources supply 100% of retail sales of electricity to California end-use customers and 100% of electricity procured to serve all state agencies by 2045.
- 50% renewable resources by 2026 and 60% by 2030 (up from 25% of retail sales by 2016, 33% by 2020, 40% by 2024, 45% by 2027, and 50% by 2030).

These policy instruments are intended to generate benefits beyond achieving carbon neutrality, such as stable retail rates for electric service. Other anticipated benefits to Californians include:

- Jobs and economic growth throughout California.
- Reduced local pollution from reduced fossil fuel use.
- Cleaner, healthier air and less pollution in vulnerable communities where power plants are often located.

The demonstration of the viability of 100% DER utilization on the grid supports California climate and clean energy legislation including SB 100. This project provided significant public benefit to California IOU electricity ratepayers by confirming that smart inverters can be deployed in support of PV penetration up to and exceeding 100% of demand. This single attribute will lower costs for electricity, create reliable electricity supply, and reduce emissions.

2018 CALIFORNIA’S FOURTH CLIMATE CHANGE ASSESSMENT

The State of California’s Fourth Climate Change Assessment\(^8\) presents climate projections and analyses of anticipated impacts in a format useful for local decision makers. Hundreds of researchers from state and federal agencies, universities, the private sector, and other stakeholder groups contributed to the report. The California Energy Commission was one of the lead coordinating agencies.

The report succinctly states: “Changing climate conditions will affect the energy system in several ways: by changing energy demand, changing performance of the energy delivery system, and by direct risks to infrastructure.”

An example is increasing electricity demand for air conditioning due to hotter temperatures (particularly peak hourly demand during the hottest months). Strategies for the subsequent challenge of electricity generating capacity matching this demand, and other climate adaptation needs, are being considered by the California Public Utilities Commission (CPUC). Climate related sea level rise and storm events increase flood and wildfire risk to energy infrastructure, particularly the NorCal grid and substations in low lying areas.

Possible response measures suggested for areas where capacity may be exceeded include additional substation capacity, distributed energy resources, or load shifting. The main adaptation suggestion for areas with damaged grid infrastructure is increased use of non-generating DER, such as such as energy storage or smart-charging electric vehicles.

77 https://focus.senate.ca.gov/sb100
78 http://www.climateassessment.ca.gov/state/overview/
CA Rule 21 Jumpstarts California’s IEEE 1547-2018 Standard Compliance

Concurrent with the activities of this project, the U.S. national standard (IEEE 1547) was further developed and refined, informed in large part by knowledge generated by SIWG experts in California.

When IEEE 1547-2018 was ratified, it specified that each DER must support at least one standard communication interface. The standard communication interface options provided by IEEE 1547-2018 are SunSpec Modbus, IEEE 2030.5-2018, and IEEE 1815, thus aligning well with CA Rule 21 requirements.

IEEE 1547-2018 is anticipated to take effect in 2020. The specific implementation date will be determined by the availability of IEEE 1547.1 conformance test procedures.

These procedures are nearing the end of development and are being reviewed at the time of this writing. The IEEE 2030.5/CSIP test procedures, delivered as part of this project, ensure DER communication interoperability and are compatible with IEEE 1547-2018, the new national standard.

California’s leadership exhibited by this project and the CA Rule 21 tariff serves to jumpstart the compliance of the DER marketplace to IEEE 1547, thus making the California grid smarter through networked and interoperable DER system components.

DER Systems with Smart Inverters Create Grid Benefits: Greater Reliability, Improved Capacity Optimization and Flexibility

A pilot installation of 15 solar plus storage solutions, networked according to CA Rule 21 Phase 1 and 2 requirements, provided operational data that enabled important insights into the DER commissioning and data networking processes, facilitating higher levels of renewable penetration and providing greater flexibility to local capacity with increased reliability through improved capacity optimization.

Improved power delivery reliability: The tested smart inverters demonstrated that higher levels of renewable generation penetration can be achieved, obviating the need for conventional sources, while enhancing reliability by providing distributed services that were previously provided by conventional bulk generating sources. The result is an economic savings resulting from reducing the need to build new power system infrastructure, (i.e. voltage support, spinning reserves, etc.) to accommodate higher levels of renewable generation.

Improved capacity optimization and flexibility: Integrating energy storage with PV provides greater flexibility to local capacity and increases reliability through improved capacity optimization. Energy storage can help reduce loads and provide services like ramping and voltage support to maintain reliability.

DER Systems with Smart Inverters Provide Increased Ratepayer Safety

Smart inverters plus storage networked within the CA Rule 21 tariff can be controlled by groups or nodes. Thus, DER systems supporting medical necessities and larger systems for critical loads can be programmed for active operation during fires or other natural disasters. Systems for which battery backup can keep critical functions going also service the greater good and can be powered when solar generation is available even if the grid is down.

Smart inverters acting as the internal programming function with microgrids could also act to keep individual systems active when the overall grid is down.
High Penetration DER Enabled by Smart Inverters Drives Economic Development

The high penetration potential of DER enabled by Smart Inverters has the additional potential of spurring economic development on several fronts.

While this project does not include a scope of work to outline quantitative benefits related to economic development, the report does point to qualitative results.

Job Development - By perpetuating solar, energy storage and related DER system proliferation in California through the clearing of challenges related to 15% DER grid penetration, the project points to job development in the following areas:

- Growth of construction jobs as a result of DER system growth.
- Software and services jobs.
- Export of CA grown DER expertise to other regions wherein CA based companies could leverage expertise in the CA market to accelerate networked grid to other parts of country.

Workforce Development

New industry entrants and existing workers in DER data communications, network IT and cybersecurity are being trained now in relation to meeting CA Rule 21 mandates. These include educating existing power line engineers to understand IT parameters. This training to bridge the existing skilled worker gap in the renewables industry and ensure the workforce is prepared for the specialized nature of new jobs related to DER and the evolving grid. Community colleges can serve as the centers for this training.

Accelerate/Increase the Manufacturing Base in CA

Assimilating lessons learned into the California manufacturing base will increase penetration of smart inverters locally and support grid stability, benefiting all stakeholders. The rollout of smart inverters and storage is occurring globally, and the lessons learned through this project will aid the growth of the California smart inverter manufacturers, energy storage providers, and data communication industries significantly.

Cost Effective Replication of Project in Other California Locations

Given the complexity of testing CA Rule 21 related functionality, development and delivery of the open SunSpec SVP software to the market is one of the project’s most important outcomes. The availability of this open platform means that DER vendors, DER asset owner/operators, and academic institutions (including other UC’s, California State University campuses, and California Junior Colleges) can adopt the technology to develop their own DER research facilities and train the next generation of workers that will be required by the market.

Research into the effects of Distributed Energy Resources is in its infancy and this project delivered a new technology (smart inverter test automation) that can be leveraged by California for years to come. With the breakthroughs this project has yielded in the areas of capital equipment cost reduction for smart inverter testing, DER simulation, and test automation, it is conceivable smart energy laboratories may one day be affordable to the likes of California high schools and primary schools.

79 SunSpec Alliance, partnering with the University of California San Diego, offers a three-unit course on the topic of the intersection of power engineering and data communication. For more information see https://sunspec.org/sunspec-california-rule-21-educational-program/
High Penetration Distributed Photovoltaics and Storage Reduce GHG Emissions by 112 million metric tons annually for a cost savings of $1.7 billion

The most recent figures for California’s greenhouse gas emissions (GHG) are for 2016. That year, the state’s total GHG emissions were 429.4 million metric tons of CO2 equivalent (MMTCO2e). The electricity sector accounted for 16% of that, or 68.95 million metric tons80.

An earlier report for with this project (“Smart Inverter for High PV Penetration: Analysis of Functionality and Behavior,” San Diego, California. Pecanek, Zack et al., California Energy Commission, October 2016) demonstrated that typical feeder circuits in the San Diego Gas and Electric grid could be loaded with PV and PV+storage systems by up to 200% of load while reducing the number of system faults and load tap operations (i.e. improving grid health).

In both the lab testing at UCSD and field testing in the SCE grid, this project was able to prove that Smart Inverter devices respond identically to simulated devices when given control signals via communication networks. Given this result, we can conclude that grid penetration levels of 100% or greater are technically feasible.

As a result, we can estimate that cost savings associated with supplying 100% of state-wide energy requirements with low cost solar energy could reduce GHG emissions by 112 million metric81 tons.

High Penetration Distributed Photovoltaics and Storage Reduce Criteria Air

The non-energy benefits, namely from GHG and criteria pollutant emission reductions, are equally important to California.

While not within the scope of the project’s quantitative benefits study, the project team can qualitatively state that DER do reduce criteria air pollutants.

An August 2007 released analysis by the National Renewable Energy Laboratory (NREL), entitled “Energy, Economic, and Environmental Benefits of the Solar America Initiative82”, found widespread DER/solar adoption would significantly reduce nitrous oxides, sulfur dioxide, and particulate matter emissions, all of which can cause health problems. NREL found that, among other health benefits, solar power results in fewer cases of chronic bronchitis, respiratory and cardiovascular problems, and lost workdays related to health issues83.

80 https://www.arb.ca.gov/cc/inventory/data/data.htm
81 California Greenhouse Gas Emission Inventory. California Air Resources Board. https://www.arb.ca.gov/cc/inventory/data/data.htm
82 https://www.nrel.gov/docs/fy07osti/41998.pdf
DER Systems Contribute to Energy Security

Energy security in the context of this qualitative project benefit is defined in two dimensions. These dimensions are availability of energy and the security of DER on the grid.

Energy security, as defined by Wikipedia, is “the association between national security and the availability of natural resources for energy consumption. Access to (relatively) cheap energy has become essential to the functioning of modern economies.” In this context, the installation of ever higher levels of DER on the California grid and the resiliency and reliability benefits of those Smart Inverter enabled DER, as now proven feasible by this project, alleviates pressure on the state to generate and/or import energy from centralized and/or fossil fuel sources.

The second dimension of energy security to which this project contributed, and will continue to contribute indefinitely past the confines of its formal end, is to DER cybersecurity. The CA Rule 21 DER installation landscape, moving forward, will be informed by and encompassing of the SunSpec Certified™ Program out of which the SunSpec Public Key Infrastructure (PKI) Program flows. PKI is designated as the method of authentication used for Institute of Electrical and Electronics Engineers Standard (IEEE Std.) 2030.5 and is therefore the method to be used for authenticating and securing communications for SunSpec Certified products and services. Thus, the program’s initial focus is to fulfill CA Rule 21 compliance.

SunSpec, working with such organizations as the Sandia National Laboratories, is also working on the harmonization and standardization of DER cybersecurity through its Cybersecurity Workgroup.

The mission of the SunSpec DER Cybersecurity Working Group is to support the deployment of DER by defining best practices in cybersecurity for DER and driving the concepts that emerge from these best practices into relevant national and international standards. This work is bounded by requirements put forth by U.S. states that are rolling out advanced DER regulations including California (Rule 21) and Hawaii (Rule 14H).

Some of the international standards referenced or influenced include those published by the Institute of Electrical and Electronics Engineers (IEEE), International Electrotechnical Committee (IEC), Internet Engineering Task Force (IETF), American National Standards Institute (ANSI), the International Standards Organization (ISO), National Institute of Standards and Technology (NIST) Internal/Interagency Reports (NISTIR), North American Electric Reliability Corporation (NERC), CIGRE (International Council on Large Electric Systems) Reports, Federal Information Processing Standard (FIPS), Department of Homeland Security (DHS) Industrial Control Systems Cyber Emergency Response Team (ICS-CERT), and the Information Security Forum (ISF).

85 https://sunspec.org/sunspec-ieee-2030-5-csip-certification/
86 https://sunspec.org/sunspec-public-key-infrastructure-pki-program/
87 https://sunspec.org/sunspec-cybersecurity-workgroup/
CONCLUSIONS AND RECOMMENDATIONS

The EPC-14-036 project was complex and involved more than a dozen corporate stakeholders operating across multiple technical disciplines. Due to the length of the project and the dynamic nature of the industry during the contract period, several significant adjustments were required, including replacing the sub-awardee responsible for the field trial and wholesale market participation project. With these adjustments came valuable lessons learned.

Conclusions

Sustaining long-term engagement of vendors with limited roles is challenging

Though vendor enthusiasm remained high throughout the project, some vendors were not ready to test when the time came and had to be replaced. The primary reasons for lack of readiness were the late resolution of technical and regulatory requirements.

Reliance on a single sub-awardee to lead multiple phases of a project is risky

Another significant challenge for the project was the withdrawal of the sub-awardee responsible for the field trial and wholesale market validation portions of the project. Both of these program elements required months of advance planning to secure the circuit density required for the evaluation conditions. When the sub-awardee withdrew, the project suffered a setback in achieving the right density and program objectives needed to be adjusted.
Bridging retail and wholesale energy markets will take more work

This project demonstrated that Smart Inverters with a standard communication interface can be manipulated to provide a wide array of grid support functions. This mechanism is precisely what is needed in order for DER to participate in the wholesale electricity market and yet it is insufficient. As described in the wholesale market analysis report included in this project, recent studies performed by Lawrence Berkeley National Laboratory showed a lack of economic feasibility for the wholesale market, due to the low profitability of DER services when operating under differing retail and wholesale tariff structures. Rather than attempt to replicate the LBNL work, further analysis was required into the feasibility of integrating the wholesale and retail markets with Rule 21 as a framework, which formed the basis of the wholesale market analysis report for this project.

New methods are needed to evaluate the economic benefits of DER and Smart Inverters

The most recent Energy Commission-approved economic models for evaluating the value of automated distribution infrastructure, including DER, were developed more than 10 years ago. The global market has evolved dramatically since then and much has changed in terms of equipment capabilities, value streams, and use cases. In order to properly analyze the value proposition of DER and Smart Inverters, a new analysis framework was needed. The project developed this framework and now offers it as the new benchmark for the industry.

Considerations for Further Development

The results presented in this report expose some of the regulatory and market barriers preventing Smart Inverters and DER from reaching their full potential. The following recommendations present actions to mitigate these barriers.

Market Considerations

As discussed in the Wholesale Market Report included in this project, the harmonization of retail and wholesale market tariffs to create a combined wholesale/retail market will be crucial to realize the full benefits of Smart Inverter DER. Greentech Media published an article in January 2019 citing issues with a wholesale market based on legacy generation resources, but adding that the relative ease of installing and commissioning energy storage (versus traditional generation resources) presents a significant advantage. The Smart Inverter testing infrastructure and standardization presented in this report further enhances this benefit for DER as a wholesale market resource.

While this project focused on the prospect of solar PV and energy storage enabled by Smart Inverters, using electric vehicles (EVs) as DER is a growing potential as well. According to the Auto Alliance, more than 162,000 plug-in EVs are registered in the state of CA. Assuming an average battery of 50 kWh, this represents over 8 GWh of capacity. While the same principles of PV/storage Smart Inverters apply, more work needs to be done to standardize EV systems as a grid resource – for example, by making the distinction between a charging station interfacing with the grid vs. a mobile EV, and classifying EVs based on whether they have an onboard inverter. Similar to stationary storage, charge management also needs to be standardized to balance grid resource needs with EV owner needs. However, if properly standardized and controlled, EVs provide vast opportunity to add to the Smart Inverter DER capacity.

88 Analysis Report of Wholesale Energy Market Participation by Distributed Energy Resources (DER) in California
91 (Gimon, 2019)
92 Chris Nelder, James Newcomb, and Garret Fitzgerald, Electric Vehicles as Distributed Energy Resources, Rocky Mountain Institute, 2016, www.rmi.org/pdf_evs_asDERs
93 (Auto Alliance, 2019)
SECTION Conclusions and Recommendations

System Cost and Compensation

For owners of DER, who traditionally interact only with the retail market, the issue of compensation must be addressed in order to incentivize participation in the wholesale market. The location and functionality of the Smart Inverter within the distribution grid greatly affects its value and compensation potential\(^{94}\). However, designing a locational value tariff presents significant technical, regulatory, and political challenges\(^{95}\). A harmonized retail and wholesale energy market will help address these challenges by creating a unified platform which can be used to establish this new value infrastructure.

For electricity providers, significant investment is required in order to develop control schemes across the smart grid. For example, the PG&E EPIC 2.02 report, which details its efforts to develop a DER management system (DERMS), recommends more investment into DERMS control infrastructure, including “improved data quality, modeling, forecasting, communications, cybersecurity, and a DER-aware [Advanced Distribution Management System] ADMS”\(^{96}\). While the results of this report demonstrate capabilities on the individual Smart Inverter level, these capabilities will only be realized with proper support from the grid infrastructure.

The advanced capabilities of Smart Inverters should be taken into consideration during the design process, both for individual DER systems and the future DER-enhanced grid. For example, verification and authorization of Smart Inverter telemetry data as utility production meter-quality data would help avoid AMI redundancies and lower installation costs, while providing the same critical data to system owners and utilities to maintain stable grid operating conditions. From a regulatory standpoint, given the results provided in this report, grid modernization proposals need to adequately and accurately reflect benefits of DER. For example, restrictions on distribution circuits for DER penetration beyond 15% need to be re-evaluated in these proposals to accurately reflect the operational benefits and avoided costs of Smart Inverter DER.

Consumer Impacts and Protections

Utilizing CA Rule 21 smart inverter functions can, dependent on the settings, reduce a DER system’s generation at certain locations. This can impact a consumer’s investment and project economics. Care must be taken to ensure customers are not unduly affected by the required settings. Since the performance of voltage regulation functions depend on a customer’s location on the grid, as well as factors outside of the customer’s control, such as utility voltage regulation practices, introducing these functions may complicate system performance, modeling and potentially reduce a consumer’s expected return on investment. Adopting explicit consumer protection provisions may be necessary to ensure that customers are aware of any potential loss of generation over time and/or that recourse exists to the extent a single customer experiences a disproportionate amount of generation loss. Similarly, DER system designers need to understand and model the effects of the new functions on DER output power to convey accurate information to customers regarding anticipated lifetime generation\(^{97}\).

94 (Dave Gahl, 2018)
95 (Spector, 2019)
96 (Pacific Gas and Electric Company, 2019)
Future Capabilities of Smart Inverters

The results of this project will help shape the future of Smart Inverters and DER on the grid. By utilizing functional and communications standards, original equipment manufacturers avoid lengthy and costly R&D required by one-of-a-kind solutions. For the DER owner, standardization of the electric functional interface and the communication interface of Smart Inverters eliminates “switching” costs associated with using one brand or another.

By providing standardized functional requirements and testing platform tools, development time can be dramatically compressed and product quality can be increased, allowing quicker implementation of DER on the grid. The SunSpec System Validation Platform reduces testing time by one to two orders of magnitude versus current practices98. This allows new Smart Inverters with 10X the functionality of non-Smart Inverters to be tested in less time.

Given a harmonized and unified retail and wholesale market for DER as described above, the IEEE 2030.5 infrastructure for the retail market can be extended to the wholesale market. This will allow Smart Inverter DER to be accessed for operation in both markets simultaneously.

Indeed, activity in other markets shows promise for DER wholesale market participation. In February 2019, Independent System Operator-New England (ISO-NE) became the first capacity market to accept an aggregated residential solar-plus-storage bid, awarding Sunrun for 20 MW of distributed grid capacity to be online in 202299.

The capabilities of Smart Inverters may also reduce or eliminate the need for duplicate equipment or functionality on the grid. For example, Smart Inverters can collect and transmit production-related information to utilities which could eliminate the need for production meters in certain instances. With Smart Inverters providing the functions of a production meter, the cost of using advanced rate designs for DER could be dramatically reduced. Given that Smart Inverters are required equipment, their ability to collect and transmit data grid-wide may displace utility investments in equipment with similar functionality.

The recent wildfires throughout the state have placed an emphasis on grid resiliency. PG&E has recently published their wildlife mitigation plan, which accounts for planned mandatory grid shutdowns during unsafe fire conditions (e.g. high winds)100. Microgrids have been proposed as a solution to keep power to certain loads during these shutdown events. Smart Inverters, given their autonomous and controllable capabilities, would be a key component of these microgrids and could help reduce the costs associated with reducing wildfire risks.

Additional work is needed to incorporate Smart Inverters into such a microgrid. A local energy management system (EMS) would be required in order to coordinate Smart Inverter operation along with other system components. Smart Inverter settings would need to be reconfigured to accommodate microgrid operation modes, and existing communication protocols do not yet provide a means to systematically reconfigure Smart Inverters for this operation. This additional operational mode would also need to be reconciled with other operational modes. For example, the primacy of events as established by Rule 21 would need to account for local conditions, such as a grid outage, and prevent non-microgrid support operation on the inverter. In short, just as aggregation and communications have been standardized for Smart Inverters in CSIP and Rule 21, microgrid operations also need to be standardized.

99 (Gheorghiu, 2019)
100 (Pacific Gas and Electric Company’s Wildfire Mitigation Plan, 2018)
Conclusion

This project successfully demonstrated that Smart Inverters compliant with CA Rule 21 Phase 1 and Phase 2 requirements can be installed safely at penetration levels of 100% or higher while eliminating the reverse energy flow and thermal problems associated with non-Smart Inverters. As a result, there are no known technical barriers imposed by Smart Inverters that would preclude California from reaching its 100% renewable energy goals.

This project includes a framework that enables Rule 21 compliant Smart Inverters to be easily deployed and integrated into the grid. SunSpec’s combined results in lab and theoretical testing, technology dissemination, education, verification, and certification for Smart Inverters provides a pathway for DER to achieve critical mass, thus enabling DER to provide non-wires grid support solutions throughout California.

In summary, SunSpec has developed a streamlined Smart Inverter standardization platform for 100% DER penetration. SunSpec’s Smart Inverter platform enables a networked energy environment, with DER serving multiple purposes and providing multiple benefits to the grid and the state of California.
The SunSpec Alliance would like to thank the following smart inverter manufacturers for participating in this project: ABB Group, Advanced Energy, Enphase Energy, Fronius International, Ideal Power, KACO New Energy, Pika Energy, Outback Power, SMA America, and Tabuchi Electric. We would also like to thank our project partners: University of California San Diego, Southern California Edison, Kitu Systems, California Independent System Operator (CAISO), Strategen Consulting, OSIsoft, and QualityLogic. The impact these companies have had on the advancement of the Distributed Energy Resource (DER) industry is immeasurable.

We would also like to thank Jay Johnson, the smart inverter research team at Sandia National Laboratories, the Smart Grid International Research Facility Network (SIRFN), San Jose State University, and Sacramento Municipal Utility District members for their contributions to the development of the smart inverter test protocols and test scripts used in this project and for their service on the technical advisory committee. These fundamental technologies are a major catalyst for the transformation of global electrical grid into an intelligent resource. In addition, we would like to thank GridSME and EPRI for their outreach and content support.

SunSpec would also like to acknowledge the expert counsel provided by Byron Washom of the University of California San Diego. Byron’s insights and words of encouragement were essential as we brought this project from concept to fruition.

Finally, we would like to thank the California Energy Commission for both having the vision to invest in research of this type and for their guidance in executing programs of this magnitude.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHJ</td>
<td>Authority Having Jurisdiction: An organization, office, or individual responsible for enforcing the requirements of a code or standard, or for approving equipment, materials, an installation, or a procedure.</td>
</tr>
<tr>
<td>AMI</td>
<td>Advanced Metering Infrastructure typically refers to the full measurement and collection system that includes meters at the customer site, as well as communication networks between the customer and a service provider.</td>
</tr>
<tr>
<td>API</td>
<td>Application Programming Interface in this document refers to a web API, which allows sharing of content between different stakeholders via a defined set of protocols and definitions.</td>
</tr>
<tr>
<td>CA Rule 21</td>
<td>Rule 21 is a tariff that describes the interconnection, operating and metering requirements for generation facilities to be connected to a utility’s distribution system. Each investor-owned utility is responsible for administration of Rule 21 in its service territory and maintains its own version of the rule.</td>
</tr>
<tr>
<td>CSIP (California Smart Inverter Profile)</td>
<td>The California Smart Inverter Profile describes configuration requirements for how an IEEE 2030.5 interface can be implemented to satisfy the CA Rule 21 requirements.</td>
</tr>
<tr>
<td>DER</td>
<td>Distributed Energy Resource</td>
</tr>
<tr>
<td>DSO</td>
<td>Distribution System Operator</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>EPIC</td>
<td>Electric Program Investment Charge, established by the CPUC in 2011, funds clean energy research and projects that support the state’s climate and energy goals while also promoting greater reliability, lower costs, and increased safety.</td>
</tr>
<tr>
<td>FERC</td>
<td>The Federal Energy Regulatory Commission, or FERC, is an independent agency that regulates the interstate transmission of electricity, natural gas, and oil.</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>IEEE 1547</td>
<td>The technical specifications for, and testing of, the interconnection and interoperability between utility electric power systems and distributed energy resources are the focus of this standard.</td>
</tr>
<tr>
<td>IEEE 2030.5</td>
<td>A communications standard which provides an interface between the smart grid and its users. It is the default communications interface in California for grid integration of DER as described in CSIP.</td>
</tr>
<tr>
<td>IOU</td>
<td>Investor-Owned Utilities</td>
</tr>
<tr>
<td>ISO</td>
<td>Independent System Operator</td>
</tr>
<tr>
<td>Modbus</td>
<td>Modbus is a set of communications protocols used between components in process automation systems.</td>
</tr>
<tr>
<td>Penetration</td>
<td>Penetration refers to the amount of power capacity added to the grid by DER. It is often reported as a percentage, which represents the ratio of peak DER output to the peak consumption of the distribution feeder on which the DER are located.</td>
</tr>
<tr>
<td>PKI (Public Key Infrastructure)</td>
<td>Public key infrastructure (PKI) is a set of roles, policies, and procedures needed to manage digital certificates and public-key encryption. It is required for activities where proof is required to confirm the identity of the parties involved in the communication and to validate the information being transferred.</td>
</tr>
<tr>
<td>Smart Grid</td>
<td>Smart grids enable real-time data collection concerning electricity supply and demand during the transmission and distribution process, making monitoring, generation, consumption and maintenance more efficient.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Smart Inverter</td>
<td>As defined in Rule 21, Smart Inverters are inverters with advanced capabilities to report and manage power quality and power flow. Smart Inverters are able to perform these tasks either autonomously or by a set of commanded controls.</td>
</tr>
<tr>
<td>UL 1741 SA</td>
<td>UL 1741: Standard for Inverters, Converters, Controllers and Interconnection System Equipment for Use with Distributed Energy Resources” is the test standard by which inverters are certified for interconnection to the grid, with particular respect to grid voltage and grid frequency. It is intended to supplement and support IEEE 1547.</td>
</tr>
</tbody>
</table>
REFERENCES

References

Hawaiian Electric Companies Motion for Approval, docket no. 2014-0192. (Public Utilities Commission of the State of Hawai‘i Jan 20, 2015).

James Obert, Patricia Cordeiro, Jay Johnson, Gordon Lum, Tom Tansy, Max Pala, Ronald Ih. (2019). “Recommendations for Trust and Encryption in DER Interoperability Standards - SAND2019-1490.”

Lloyd Cibulka, Tom Tansy, Bob Fox, Suzanne Martinez, Dr. Jan Kleissl, (2018). “Smart Inverter Performance Testing to UL 1741 SA and CA Rule 21 Criteria: Results from the UC San Diego Smart Inverter Laboratory.”

Lydic, Brian and Baldwin, Sara, (2019). “Making the grid smarter”. Interstate Renewable Energy Council.

Pacific Gas and Electric Company’s Wildfire Mitigation Plan, r. 18-10-007 (Public Utilities Commission of the State of California Oct 25, 2018).

ABOUT SUNSPEC ALLIANCE

Global alliance of Distributed Energy Resource (DER) industry participants

Driver of industry growth and efficiency via open communication and information standards

Active programs for system- and device-level communication, financial and operational data exchanges, and cybersecurity

CONTACT
www.SunSpec.org