Document #: 12041
Status: Approved

Version 1.9

SunSpec Information Model Specification

SunSpec Alliance Interoperability Specification

SUNSPEC

— ALLIANCE —

ABSTRACT

The SunSpec Alliance Interoperability Specification suite consists of the
following documents:

- SunSpec Technology Overview

- SunSpec Information Model Specification

- SunSpec Information Model Reference Spreadsheet

- Collection of SunSpec Device Category Model Specifications
- SunSpec Plant Extract Document

- SunSpec Model Data Exchange

This SunSpec Information Model Specification describes the construction of
the information models. It applies to Models of all device categories. It is
intended to provide SunSpec users and device implementers the detailed
information needed to interoperate with existing SunSpec-compliant
devices, or implement new devices.



About the SunSpec Alliance

The SunSpec Alliance is a trade alliance of developers, manufacturers, operators and service
providers, together pursuing open information standards for the distributed energy industry.
SunSpec standards address most operational aspects of PV, storage and other distributed energy
power plants on the smart grid—including residential, commercial, and utility-scale systems—thus
reducing cost, promoting innovation, and accelerating industry growth.

Over 70 organizations are members of the SunSpec Alliance, including global leaders from Asia,
Europe, and North America. Membership is open to corporations, non-profits, and individuals. For
more information about the SunSpec Alliance, or to download SunSpec specifications at no charge,
please visit www.sunspec.org.

Change History
1.3: Added change history
Allow device aggregation via multiple common models
Manufacturer ID should be registered with SunSpec
Added M/0/C column to xIs map.
Require Manufacturer, Model, and Serial Number to be supplied
1.4  Add Copyright

1.5 Updated Logo
Corrected Assigned ID range for String Combiner and Module
Added Assigned ID ranges for Inverter model, version 1.2, Module model, version 1.1, Inverter
Controls and Network Interface.
Added concept of a scale factor as a basic SunSpec type.
Added concept of SunSpec Device type to Common Model
Changed over to new names for points
Added definition for acc64, ipaddr, ipvéaddr types
Scale factor clarification wrt unimplemented
Align the document with the new short names
Update Network Configuration, new model ids and some descriptions
Add recommendation on default serial port settings (9600,8,N,1)
Removed model table and replaced with reference to the PICS
Added descriptions for bitfield and enum
John Blair’s contribution: document new types, terminology, model structure, best practices,
other conventions. Included Control Procedural Requirements

1.6  Call out conformance statements, add new conformance requirements for control
New title to better distinguish “Device Modeling” from “Common Model” overload

1.7  Restructure document

1.8 Updated descriptions. Underlying model definitions are unchanged.

1.9  Further descriptive clarification.

Copyright © SunSpec Alliance 2011, 2012, 2013, 2014. 2015 All Rights Reserved.

This document and the information contained herein is provided on an "AS IS" basis and the
SunSpec Alliance DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE.

This document may be used, copied, and furnished to others, without restrictions of any kind,
provided that this document itself may not be modified in anyway, except as needed by the SunSpec
Technical Committee and as governed by the SunSpec IPR Policy. The complete policy of the SunSpec
Alliance can be found at www.sunspec.org.

Information Model Overview - Version 1.8 2



Table of Contents

0L 06 L1 T ) o PP 5
TEIMINOLOZY w.eeeereeeereereesreeeess ettt s e s s s s s bR AR 6
Specification STatus LIfECYCLE ...ttt sssesssssesans 6
SUNSPEC COTIfICATION ..euveereereeeeseeeeteessesees s s s 6
SunSpec Information Model Definition........oneenneenceeeseeeseeeeseeses e ssessesssesnas 7
SUNSPEC DEVICE DEfINITIONS.c.cucuieereeeeereeeesserses s seesssssees s ses s sssss s 7
Information Model Structure and CONtENtS......comrmeneerneresssss s 8
000} 4000070} o 1017 (oo =) 000 PP 8
Standard MOAe] ... ———————— 9
L7220 T0 10 LY 0T L N 9

0 0 L (o 7o (=) PP 9

I 06 (S B] 0 DT 00 PP 9
(061 0100 00 Tor 1 BN (o1 DD PPN 9
Determining the Number of Repeating INStances ........oooeneereeneeeseenseeseeseeseesseennes 10
Cases Derived From the Canonical StruCture..........esssesssenns 11
7,70 LeNGEh MOAEL ..ottt s e s s s snees 13

D LT o 0] L 13
Rules for Implementing Data POINTS ......coeneeneneeneseeseeeesesseeseesessessssssessssssesssssssseees 13
Standard Data FOIMats ... ssssssssssssssssssssssssssssssssssssssssssssssssesss 13
16-Dit INTEEET VAlUES ...ttt eesseese s s s s e 14
32-Dit INEEET VALUES ..o ieeeereeeeeeereeeesseeeessessessessses s ssss s s s s s ssssanes 14
64-Dit INTEEET VALUES ...ttt esssesss e s s s s ssnsaes 15

128 Bit INtEZET VALUES ..ot seesseeesssssesessseses e ssesasss s sssssss s ssssssssassssssans 15
SEFING VAIUES .ottt es e s s 15
Floating POINT VAIUES ...ttt sssssss s s s ssssssaes 16
Yot 1L - Tot ) PP 16
DefiN@d UNIES ..o s s ssssssnes 16
MOdbUS RegIStEr MaPPINES.ccuueurerreueeurereessessessesssessesssessesssssssessssssessesssesssessesssesssssssssssssssssessessssssnees 16
Base and Alternate Base Register AAdIeSSES ......oemeeneeneenseeseeseeseessessessessesssesseseees 17
Best Practices for MOdel DeSiGN......eeceneenreereeseeeesseesesseesessesssesssssesssessssssssssssssssssssssssssssees 17
GTOUP SCALE FACTOTS.c.cuieueeeeneeseeeeesees et sess s s s s bbb 17
Use Instance Scale Factors When ApPropriate...... e eeeneeseenseeseesesseessssssessesssesseees 18
Use PAD to keep 32 and 64 bit aligNment......c..oereeneeneennesseenneeseesseeeeessesssseessessessessseseees 18

Information Model Overview - Version 1.8 3



Reuse point IDs from other MOdElS.......o e ssesseseees 18

Reuse status and events from other models.......onnn: 18
SunSpec Procedural REQUITEIMENTES .......ccvueeriereeseesreeeesseesesseessessesssessessssssesssssssssssssssssessssssesseees 18
Y #2100 R 00T L= PP 18
ErTOr HANAIING oottt ssses s sse s 19
Unimplemented REZISTETS ......ereeeereereeseesseeeessesssssessessesssesssssessssssssssssssssssssessssssssssees 19
INValid SEtHNG VALUE ..ottt s s 19
Read-Only and Write-Only REGISTEIS ......oerereeureeseereesneeeessessessesssesseessessssssssssssssssssanes 19
Incomplete ENUMETAtiON.....oeeeeereeseesseeseseesseseesseessessesssssesssssssessesssesesssesssssssssssssssssssanes 19

| DaTed0) 000 o) L1l 030755 =1 () o UOO T TSP 19
Organization of Control Read/WTrite ValUes.......onemeeneeneenneeseeseeseessessessessesseessesseees 19
Procedures for Multi-Write Operations........eeereeneenesnsessesssessesssesssesssssessssssessssssesseees 21

Information Model Overview - Version 1.8 4



Introduction

This document offers a detailed description of the construction of SunSpec
Information Models. It applies to Models of all device categories.

This information is useful for those wanting to understand or create SunSpec
Information Model definitions.

The Information Models can be used to convey device data between any two
communicating entities by mapping them to the communications protocol
appropriate for the entities. The typical use case is depicted in the following
diagram, where the communication between the devices and a gateway is Modbus
and the communication between the gateway and data store is an Internet protocol
such as HTTP. The Modbus mapping is defined in this document in the Modbus
Register Mappings section; the Internet communication typically uses the XML
encoding directly; this usage is described in the SunSpec Model Data Exchange
document.

—

Modbus, XML,
ZigBee, OPC, DNP3

Internet
VPN

o —_—

End-To-End Security,
Monitoring & Control

o 7So|ar Plant

Applications

Information Model Overview - Version 1.8 5



Terminology
Device A physical object that performs a set of functions. Examples are
inverters, trackers, and modules.

Device Description The collection of Information Models that describe a SunSpec
device implementation.

Model A set of data points describing a logical functional block.
Information Models are comprised of three elements: the Model
ID, the length of the data (in 16-bit registers) and the data.

Block A collection of data points. The canonical SunSpec Model consists
of two blocks, fixed and repeating, each of which is optional.

Instance A single occurrence of a block that is repeated in a repeating block.
Point A value encoded using one of the SunSpec data types.
PICS Protocol Implementation Conformance Statement (PICS). All

SunSpec implementations are declared by the vendor in a Protocol
Implementation Conformance Statement (PICS). The PICS
specifies the details of a specific implementation and is used for
verification of conformance to SunSpec standards.

Specification Status Lifecycle
SunSpec Interoperability Specifications follow the lifecycle pattern of

* DRAFT
e TEST
e APPROVED

e SUPERSEDED

TEST specifications may be implemented but resulting implementations are not
subject to SunSpec Certification. APPROVED specifications may be implemented and
resulting implementations are subject to SunSpec Certification. SUPERCEDED
specifications may also be implemented and resulting implementations are subject
to SunSpec Certification, but use of SUPERCEDED specifications is discouraged.

Status for each Model is indicated on the Index page of the Comprehensive Data
Model and Modbus Map. Be sure to check the status of any model before you
implement. Only approved models can be certified by SunSpec.

SunSpec Certification
Devices implementing the Models specified herein can be certified by SunSpec; see
http://sunspec.org/sunspec-certified-program.

Information Model Overview - Version 1.8 6



SunSpec Information Model Definition

SunSpec Information Models are defined using the SunSpec Model Definition XML
(SMDX) encoding. Reference the SMDX file for the definitive version of any Model.
The SMDX files are also compiled into a spreadsheet called SunSpec Information
Model Reference.xlsx for human consumption. There is currently one Excel tab per
Model definition. The SMDX file is the definitive version and the spreadsheet is only
provided for readability.

See ‘Modbus Register Mappings’ for how these models are represented in Modbus,
and the SunSpec Model Data Exchange specification for how they are represented in
XML.

A key feature of the SunSpec approach is flexibility allowing vendors to extend the
capabilities of a device category or develop new device categories. SunSpec
definition techniques allow for extensibility in the following ways:

* Definition of new Standard Models. New Models are defined and assigned
new model ID’s by SunSpec.

* Revisions of Standard Models. Revisions to standard Models are defined and
assigned new Model ID’s by SunSpec.

* Vendor Models. Vendors may also define a Vendor Model that includes fields
and values specific to the vendor. These are assigned a Model id in the 65xxx
range by SunSpec.

SunSpec Device Definitions

A Device Definition is a collection of two or more information Models: a Common
Model and one or more Standard or Vendor Models.

Each information Model is uniquely defined and contains a well-known identifier
and length. This allows a client to browse the contents of a device description and
skip information Models with unrecognized identifier (ID) values.

The SunSpec device definition structure is shown below:

Common Model

Standard Model(s)

Vendor Model(s)

Each category of device has a corresponding Information Model detailing the points
specific to that category. Currently supported SunSpec Device Categories are

Information Model Overview - Version 1.8 7



Inverters

Meters

Panels

Environmental Sensors
String Combiners
Trackers

Energy Storage

Charge Controllers

Additional device categories will be taken up and defined as directed by the SunSpec
Alliance membership.

Information Model Structure and Contents

Common Model
The Common Model is where manufacturer and product-model identification
information is specified for a SunSpec device implementation.

The following data elements comprise the Common Model and must be included to
uniquely identify a SunSpec device implementation.

ID - A well-known value, “1”, that uniquely identifies this as the SunSpec
Common Model.

L - A well-known value, “66” or “65”. Implementations of length 66 shall
contain a pad register as the final register.

Mn - A unique value that identifies the Manufacturer of this device.
Manufacturers must register their ID with SunSpec to guarantee uniqueness.
SunSpec maintains a database of certified products by Manufacturer. The Mn
should be concise and must be constrained to simple alphanumeric text void
of spacing.

Md - A manufacturer specific value that identifies the product model of this
device. SunSpec maintains a database of certified products by model. The Md
should be concise and must be constrained to simple alphanumeric text void
of spacing.

Opt - A manufacturer specific value that identifies any model options for this
device.

Vr - A manufacturer specific value that identifies the firmware version of this
device.

SN - A manufacturer specific value that uniquely identifies this device within
the manufacturer name space.

DA - Protocol specific value to address this device instance. For Modbus
devices, this is the Modbus device ID.

Pad - SunSpec pad16 register. Padding must be included for Common
Models of length 66. The Pad is not included if the length is 65.

Information Model Overview - Version 1.8 8



Note: SunSpec requires that the result of concatenating the three strings Mn,
Md, and SN return a globally unique string for all of a manufacture’s products.
This string may be used (for example) by logging and upgrading functions.

Standard Model

Following the Common Model will be zero or more standard Models. The Standard
Model is structured as follows:

* ID - A well-known value that uniquely identifies the Model. Valid identifiers
are assigned by SunSpec.

e L - Avalue thatis the length of the Model in 16-bit registers. The length
should be even and may contain a rounding pad register. The length does
not include the ID or L register. It is the number of registers that follow.

* Model blocks follow as required. If the ID is not recognized by the client, the
L value may be used to skip over the Model contents and move to the next
Model.

Vendor Models

Vendor Models can be defined by a device vendor to contain points that are only
applicable to the vendor’s implementation. Vendor Models do not need to go
through the SunSpec standard Model review process but must conform to all rules
regarding the creation of a SunSpec Model definition. Vendor Models are structured
in the same way as standard Models.

A Vendor Model requires an ID assigned by SunSpec.

End Model
The Device Definition is terminated by a Model with ID ((0xFFFF)), followed by a
length (L) value of zero.

Model Structure

Every SunSpec Model contains one or more Blocks.

A Block is a logical group of points within a Model. There are two types of Block:
fixed and repeating.

A SunSpec Model may only contain a single fixed Block and may contain multiple
instances of a repeating Block. The fixed Block contains points that appear only once
in the Model. A repeating block allows the Model to contain multiple instances of the
same point group. The diagram below is a visual representation of the Model
structure.

Canonical Structure
Every Model starts with a fixed 2-register header specifying the ID of the Model and
the length of the data portion (in 16 bit registers) following this header.

This structure is shown here:

Information Model Overview - Version 1.8 9



The repeating Block is composed of one or more repeating instances, where an

Header
(Model ID + Length)

Fixed Length Block
(may be zero length)

Repeating Block
(may be zero length)

instance is a sequence of points defined in the Model's specification.

Thus the length of the repeating Block is constrained to be a whole number multiple
of the length of an individual instance.

This structure is defined as follows:

Component Size (16-bit Registers) Comments
Model ID 1 Assigned value
Model Length 1 Length of data portion (fixed length

block + total repeated block length)

Fixed Length Data Block

Data block length

May be zero length

Repeating Block

Number of instances *
instance length

May be zero length

All SunSpec data Models must adhere to the SunSpec canonical format. Reading
applications, such as data loggers, depend on this structure to properly parse
discovered data Models. The structure also allows reading applications to ignore
Models it does not understand yet, and continue to parse any Models it does

understand.

Determining the Number of Repeating Instances

In all cases the reading application determines the number of repeating instances by
using the following formula:

n=(>1-f)/1i
n number of repeating instances in the repeating block
[ total length of the Model, as provided by the device
f length of the fixed length block, in registers
i length of the repeated block, in registers

Information Model Overview - Version 1.8

10



There may be cases where a Model also indicates the number of instances in the
repeating section in a point, usually named N. The reading application must not rely
on this value but should instead compute the number of instances based on the total
indicated length.

Cases Derived From the Canonical Structure

The specified structure gives rise to three main classes of Models, plus one
degenerate case. We will consider each case in turn along with corresponding
examples of existing data Models. Length values will be indicated using the n, i, f; |
notation described above.

Fixed Length Data Models
The number of registers in the fixed length Block is constant. The repeating section
is zero length and thus omitted.

Model ID id

Length f

Fixed Length Block f registers

Examples of data Models with this structure are 1: Common Model, 101: Single
Phase Inverter Model and 201: Single Phase Meter Model.

Since there is no repeating section the length indicated by the device must match
the specified length for a given Model.

Information Model Overview - Version 1.8 11



Repeating Models
The repeating Model contains no fixed length section.

Model ID id

Length n*j

Repeating Block  n * i registers

Examples of this structure are 302: Irradiance Model, 303: Back of Module
Temperature Model and 304: Inclinometer Model.

To determine the number of repeated instances the reading application must know,
from the specification, the length of an instance in a given Model. The reading
application divides the indicated total Model length by the known instance length to
determine the number of instances present.

For example, if the reading application discovers Model 304 with a length of 18. It
knows that the length of the repeating instance in Model 304 is 6, so applying the
formula from above it determines there are 3 repeated instances.

3=(18-0)/6

Combined Model with Both a Fixed Length Block and Variable Length Block
A Model may contain both a fixed length section and a repeating section.

Model ID id

Length f+(n*i)

Fixed Length Block n registers

Repeating Block n * i registers

For example, Model 403, the String Combiner, is composed of a fixed length block of
16 registers followed by a repeating block with an instance length of 8 registers. If a
device reports the total length is 112 registers then there must be 12 instances in
the repeating section.

12=(112-16)/8

Information Model Overview - Version 1.8 12



Zero Length Model

The zero-length Model is included for the sake of completeness. The only zero
length Model allowed is the SunSpec end marker, with ID OxFFFF. In the canonical
Model, both the fixed length block and the repeated block are length zero.

ID OxFFFF

Length 0

Data Points

A data point is a machine-readable data value within a block. A Setting is a point
that can be changed.

Rules for Implementing Data Points
The following rules apply to implementing data point values:

* A data point must be of one of the SunSpec data types.

* Data point support is designated in a Model as Mandatory or Optional.
Mandatory means the attribute is required to be supported. Optional means
support for the point is not required.

* Implementations of a given Model must support all Mandatory data points
and contain address space for all of the data points defined by the Model.

* Implementations must indicate which Optional data points are not supported
by returning the appropriate “Not Implemented” value for the data point
value.

* Data points may be designated in the Model as having enumerated values,
defined bitfields, or range. Implementations should support all of the values
and bits.

* Implementations may or may not support all of the enumerated values or
bitfields in a register.

* Implementations that implement a setting must indicate the supported
setting values (enumerations or bitfields) or valid range (scalar) and default
value in the PICS document.

* Implementations must note any data point value limitations in the associated
PICS document.

* Data point support may be designated in the Model as Read-Only (R) or
Read/Write (RW). Implementations may implement RW data points as R.

* Implementations must note any access exceptions in the associated PICS
document.

Standard Data Formats
Implementations are restricted to data points in the following standard data
formats.

Information Model Overview - Version 1.8 13



* int:signed integer value.

* uint: unsigned integer value

* pad: reserved field, used to round a Model to an even number of registers
* acc: accumulated value, used for ever increasing values that may roll over
e enum: enumerated value, used for status and state

¢ Ditfield: a collection of bits, multi-valued alarms or state

* string: a null terminated or fixed length value

* ip:internet protocol formatted network address

SunSpec Models can be conveyed using any underlying communication protocol.
The first, and most popular protocol used, is Modbus. A Modbus mapping is
therefore included as part of the specification.

16-bit Integer Values

Values are stored in big-endian order per the Modbus specification and consist of a
single register. All integer values are documented as signed or unsigned. All signed
values are represented using two’s-compliment format.

Modbus Register 1

Byte 0 1

Bits 15 14 [13 J12 J10 J11 |9 [8|7]6[5]4a3]2]1]0

int16 Range: -32767 ... 32767 Not Implemented: 0x8000

uintl6 Range: 0 ... 65534 Not Implemented: OxFFFF
accl6 Range: 0 ... 65535 Not Accumulated: 0x0000
enum16 Range: 0 ... 65534 Not Implemented: OxFFFF
bitfield16 Range: O ... 0x7FFF Not Implemented: OxFFFF
pad Range: 0x8000 Always returns 0x8000

NOTE: it is up to the master to detect rollover of accumulated values.
NOTE: if the most significant bit in a bitfield is set, all other bits shall be ignored.

32-bit Integer Values
32-bit integers are stored using two registers in big-endian order

Modbus Register 1 2
Byte 0 1 2 3
Bits 31..24 23 .. 16 15..8 7..0

int32 Range: -2147483647 ... 2147483647 Not Implemented: 0x80000000

uint32 Range: 0 ... 4294967294 Not Implemented: OXFFFFFFFF
acc32 Range: 0 ... 4294967295 Not Accumulated: 0x00000000
enum32 Range: 0 ... 4294967294 Not Implemented: OXFFFFFFFF

Information Model Overview - Version 1.8 14



bitfield32 Range: 0 ... 0Ox7FFFFFFF Not Implemented: OXFFFFFFFF
ipaddr 32 bit [Pv4 address Not Configured: 0x00000000

NOTE: it is up to the master to detect rollover of accumulated values.
NOTE: if the most significant bit in a bitfield is set, all other bits shall be ignored.

64-bit Integer Values
64-bit integers are stored using four registers in big-endian order.

Modbus Register 1 2

Byte 0 1 2 3

Bits 63..56 55...48 47 ... 40 39..32
Modbus Register 3 4

Byte 4 5 6 7

Bits 31..24 23 .. 16 15..8 7..0

int64 Range: -9223372036854775807 ... 9223372036854775807
Not Implemented: 0x8000000000000000
acc64 Range: 0 ...9223372036854775807 Not Accumulated: 0

NOTE: Only positive values in the int64 range are allowed. Accumulator values
outside of the defined range shall be considered invalid.

NOTE: The accumulator value shall rollover after the highest positive value in the
int64 range (Ox7fffffffftfftfff). Itis up to the reader to detect rollover of accumulated
values.

128 Bit Integer Values
128 bit integers are stored using eight registers in big-endian order.

ipvb6addr 128 bit [IPv6 address Not Configured: 0

String Values

Store variable length string values in a fixed size register range using a NULL (0
value) to terminate or pad the string. For example, up to 16 characters can be
stored in 8 contiguous registers as follows

Modbus Register 1 2 3 4 5 6 7 8
Byte 0|12 (3 |4|5]|6 7 819 (10|11 12|13 | 14 15
Character E|IX|A|{M|P|L|E]|spc|S|T|R | N | G I | NULL

NOT_IMPLEMENTED value: all registers filled with NULL or 0x0000

Information Model Overview - Version 1.8 15



Floating Point Values
Floating point values are 32 bits and encoded according to the IEEE 754 floating
point standard.

Modbus 1

Register

Byte 0 1

Bits 31 [30 [29 |28 [27 [26 |25 [24 [23 [22 [21 |20 [19 [18 [17 |16
IEEE 754 sign | Exponent Fraction

Modbus 2

Register

Byte 2 3

Bits 15 |14 [13 [12 J11 10 |9 [8 |7 |6 [5 |4 |3 [2 |1 Jo
IEEE 754 Fraction least

float32 Range: see [EEE 754 Not Implemented: 0x7FC00000 (NaN)

Scale Factors

As an alternative to floating point format, values are represented by integer values
with a signed scale factor applied. The scale factor explicitly shifts the decimal point
to the left (negative value) or the right (positive value). Scale factors may be fixed
and specified in the documentation of a value, or may have a variable scale factor
associated with it. For example, a value “Value” may have an associated value
“Value_SF” of type “sunssf” that is a 16 bit two’s compliment integer.

sunssf signed range: -10 ... 10 Not Implemented: 0x8000

If a value is implemented and has an associated scale factor, the scale factor must
also be implemented.

Defined Units
Units are defined as needed by specific Models. Where units are shared across
Models, care will be taken to ensure a common definition of those units.

Modbus Register Mappings

All SunSpec device maps begin at one of the well-known base addresses and start
with the well-known 32-bit ‘SunS’ identifier (0x53756e53). This allows for
discovery of SunSpec compatible devices. If the base register does not return this
value, the alternate base registers are checked. If this test fails, the device is not
SunSpec compatible.

Following the ‘SunS’ identifiers are the Models as defined in the Model Structure
section, above.

Information Model Overview - Version 1.8 16




‘SunS’ (0x53756€53)

Common Model

Standard Model(s)

Vendor Model(s)

End Model

If you read beyond the end of the device, a Modbus exception may or may not be
returned according to the implementation. If no exception is returned, then data
that comes after the End Model is invalid and should not be used. Itis
recommended that masters read the common model to determine the contents of
the map.

NOTE: This specification only addresses the format of the data. The data can be
moved via Modbus/TCP or RTU - or any other protocol that can move Modbus data..

Base and Alternate Base Register Addresses
Device Modbus maps begin at one of three well-known Modbus base addresses.

Preferred Base Register: 40001
Alternate Base Register: 50001
Alternate Base Register: 00001

Base registers are actual register offsets that start at 1 - not a function code and not
to be confused with the Modicon convention, which would represent these as
4x40001 and 4x50001.

To read register 40001, use the hexadecimal offset of 0x9C40 (40000) on the wire.

Best Practices for Model Design

We've spent several years developing data models for multiple classes of devices. In
addition to the model design described previously, we have come up with the
following list of best practices. These are not hard-and-fast rules; in fact, most of
them are violated by one or more models. However, going forward we would like all
data models to follow these guidelines.

Group scale factors

Scale factors should be grouped together in a block rather than scattered
throughout the model. Grouping the scale factors instead of intermixing them with
data points reduces the number of registers a Modbus master will need to read.

Information Model Overview - Version 1.8 17



For example, model 403, the String Combiner Model shows the scale factors
grouped in the fixed-length section at the start of the mode. Actually, there are two
groups, since InDCA_SF and InDCAhr_SF were added when 401 was deprecated.

Model 101, the single phase inverter model, puts the scale factors in the model close
to the data points they modify. While mitigated by the fact the entire model fits into
a single Modbus read, this design requires the scale factors to be read to retrieve all
the measurements.

Use Instance Scale Factors When Appropriate

Keep in mind that for a device with many subcomponents represented by instance
variables, it may not be appropriate to use the same scale factor for aggregated
values and instance values. This mistake was made with the first versions of the
String Combiner (401 and 402). The same scale factor was used, for example, for
aggregated current and individual string current. This meant the dynamic range of
the string current value was limited to the range required by the entire combiner.
This issue was corrected in models 403 and 404.

Use PAD to keep 32 and 64 bit alighment

As a consideration to low resource devices model designers should align all 32 and
64 bit values on even numbered offsets. A PAD register should be added at the end
of the fixed length block and/or at the end of a repeating block to ensure both add
up to an even number of registers. Arrange the other points as needed to place the
PAD at the end of the block.

Official SunSpec models should not have more than two PAD registers: one for the
fixed length block and one for the repeating block. Vendor models may use PAD to
mark ranges of registers as reserved for future use.

Reuse point IDs from other models
Use the same ID as existing models to represent the same physical quantity. This
will aid implementation and interpretation of the data model.

Reuse status and events from other models

When two models share similar behavior please re-use existing status and event
values. Mark unneeded vales as RESERVED. Compare the inverters models (101,
102 and 103), the Smart Panel models (501 and 502) and the Multiple MPPT
Inverter Extension (160) for an example.

SunSpec Procedural Requirements

SunSpec compliant devices adhere to the procedural requirements outlined in this
section.

Status Codes
Models that support a status code value in the Standard Model must support the
following status values.

Information Model Overview - Version 1.8 18



NORMAL 0x00000000 - Operating Normally
ERROR OxFFFFFFFE : Generic Failure
Device specific status codes are defined in corresponding device model.

Error Handling
There is a need to handle errors in a consistent way for conformance testing and
interoperability. Applications need a known way to detect errors and handle them.

Unimplemented Registers
Unimplemented registers should have the following behavior:

* READ: The value returned is the SunSpec unimplemented value.
*  WRITE: The written value is ignored. No exception is generated.

Invalid Setting Value
When a setting is written with an unsupported value for the implementation, the
following must occur:

* An exception “3” lllegal Data Value must be returned and processing of the
write operation must terminate. Previous registers may have been written
but no subsequent registers can be written.

* Such limitations must be documented in the PICS

Read-Only and Write-Only Registers
The following behavior is defined when attempting to write to a read-only register
or read from a write-only register.

*  WRITE to R: The written value is ignored. No exception is generated.
e READ from W: If the register is supported returns 0 else returns the
unsupported value.

Incomplete Enumeration
Unimplemented enumeration values must be marked as unimplemented in the PICS.

Incomplete Operation

Some operations may not take place in time for a Modbus response. If it is desired to
return a Modbus Exception “5” ACKNOWLEDGE, the model must support a
completion register. Otherwise, no exception is returned.

Organization of Control Read/Write Values

It is desirable to organize related settings values within the Modbus map in a way
that minimizes the number of writes necessary to accomplish updating and
activating the settings. Control operations that rely on a group of settings must
have a register to control the activation (enabling / disabling) of the control.

To facilitate that goal, the following guidelines are recommended:

Information Model Overview - Version 1.8 19



* Related writable settings field are organized in a contiguous block
¢ Activation fields are located at the end of the settings block
* Activation fields only operate on the behavior related to that settings block

Information Model Overview - Version 1.8

20



Procedures for Multi-Write Operations

For operations that require multiple writes (e.g. set operating parameters and then
enable), the procedure is recommended. It is not recommended to disable the
control to update the settings.

Enable Procedure:

1. All settings are written
2. The activation field is enabled

Change Procedure:

1. Changed settings are written. Changes do NOT take effect, even if the
activation field is already enabled, until the activation field is enabled.
2. The activation field is enabled

Disable Procedure:

1. The activation field is disabled

Information Model Overview - Version 1.8 21



