Status: Approved

Version: 1.2

SunSpec DER Information Model Specification

SunSpec Specification

Abstract

This document describes the SunSpec Distributed Energy Resource (DER) information models that provide support for the Institute of Electrical and Electronics Engineers (IEEE) 1547-2018 functionality using SunSpec information modeling.

Copyright © SunSpec Alliance 2024. All Rights Reserved.

All other copyrights and trademarks are the property of their respective owners.

License Agreement and Copyright Notice

This document and the information contained herein is provided on an "AS IS" basis and the SunSpec Alliance DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

This document may be used, copied, and furnished to others, without restrictions of any kind, provided that this document itself may not be modified in any way, except as needed by the SunSpec Technical Committee and as governed by the SunSpec IPR Policy. The complete policy of the SunSpec Alliance can be found at sunspec.org.

Prepared by the SunSpec Alliance Website: sunspec.org

Email: info@sunspec.org

Revision History

Version	Date	Comments
1.0	4-20-2021	Initial release
1.1	3-14-2022	Formatting, copy editing, and front matter update.
1.2	6-24-2024	Adding missing information, fixing typos Adding Modbus Enable section

About the SunSpec Alliance

The SunSpec Alliance is a trade alliance of developers, manufacturers, operators, and service providers together pursuing open information standards for the distributed energy industry. SunSpec standards address most operational aspects of PV, storage, and other distributed energy power plants on the smart grid, including residential, commercial, and utility-scale systems, thus reducing cost, promoting innovation, and accelerating industry growth.

Over 150 organizations are members of the SunSpec Alliance, including global leaders from Asia, Europe, and North America. Membership is open to corporations, non-profits, and individuals. For more information about the SunSpec Alliance, or to download SunSpec specifications at no charge, visit sunspec.org.

About the SunSpec Specification Process

SunSpec Alliance specifications are initiated by SunSpec members to establish an industry standard for mutual benefit. Any SunSpec member can propose a technical work item. Given sufficient interest and time to participate, and barring significant objections, a workgroup is formed and its charter is approved by the board of directors. The workgroup meets regularly to advance the agenda of the team.

The output of the workgroup is generally in the form of a SunSpec Interoperability Specification. These documents are considered to be normative, meaning that there is a matter of conformance required to support interoperability. The revision and associated process of managing these documents is tightly controlled. Other documents are informative, or make some recommendations with regard to best practices, but are not a matter of conformance. Informative documents can be revised more freely and more frequently to improve the quality and quantity of information provided.

SunSpec Interoperability Specifications follow a lifecycle pattern of: DRAFT, TEST, APPROVED, and SUPERSEDED.

For more information or to download a SunSpec Alliance specification, go to https://sunspec.org/about-sunspec-specifications/.

Table of Contents

1	Intro	ductio	n	7
	1.1	Doc	ument Organization	7
	1.2	Tern	ninology	8
2	Norn	native	References	10
3	Over	view		11
	3.1	Curv	ve Management	11
		3.1.1	Curve Layout	11
		3.1.2	Curve Update	12
	3.2	Reve	ersion Timers	12
	3.3	Mod	lbus Enable	14
	3.4	Trip,	/Momentary Cessation Settings	14
		3.4.1	Terminology Clarification	14
		3.4.2	Trip/Momentary Cessation Region Representation	14
		3.4.3	Configuration	16
	3.5	Man	datory/Optional Points	17
4	DER	Inform	nation Models	18
	4.1	DER	AC Measurement (701)	19
	4.2	DER	Capacity (702)	30
	4.3	DER	Enter Service (703)	38
	4.4	DER	AC Controls (704)	40
	4.5	DER	Volt-Var (705)	48
	4.6	DER	Volt-Watt (706)	51
	4.7	DER	Trip Low Voltage (707)	55
	4.8	DER	Trip High Voltage (708)	58
	4.9	DER	Trip Low Frequency (709)	61
	4.10	DER	Trip High Frequency (710)	64
	4.11	DER	Frequency Droop (711)	68
	4.12	DER	Watt-Var (712)	71
	4.13	DER	Storage Capacity (713)	74
	4.14	DER	DC Measurement (714)	76

Index of Tables

Table 1: Curve Management Points	11
Table 2: Voltage and Frequency Trip Regions	15
Table 3: Voltage Trip/Momentary Cessation Points	16
Table 4: DER AC Measurement Points	21
Table 5: DER Capacity Points	
Table 6: DER Enter Service Points	
Table 7: DER AC Controls Points	42
Table 8: DER Volt-Var Points	
Table 9: DER Volt-Watt Points	
Table 10: DER Trip LV Points	
Table 11: DER Trip HV Points	
Table 12: DER Trip LF Points	
Table 13: DER Trip HF Points	
Table 14: DER Frequency Droop Points	
Table 15: DER Watt-Var Points	
Table 16: DER Storage Capacity Points	
Table 17: DER AC Measurement Points	76
Table of Figures	
Figure 1: Reversion Timer States	13
Figure 2: Voltage Trip/Memortany Coscation	16

1 Introduction

The SunSpec Distributed Energy Resource (DER) Information Model Specification defines SunSpec Device Information Models for DERs. A primary goal of this specification is to define a standard way for DERs and interfacing systems to exchange information. DERs and controlling entities that implement the models described in this specification can reliably perform DER management by implementing one or more of the following models, which comprise the complete set of DER related functions:

- DER AC Measurement
- DER Capacity
- DER Enter Service
- DER AC Controls
- DER Volt-Var
- DER Volt-Watt
- DER Trip LV
- DER Trip HV
- DER Trip LF
- DER Trip HF
- DER Frequency Droop
- DER Watt-Var
- DER Storage Capacity
- DER DC Measurement

This specification is intended to be used in conjunction with the SunSpec Device Information Model Specification and is compliant with the information modeling requirements specified in that standard.

This specification supports reading and writing Information Model points implemented in a DER. This document describes the full SunSpec DER Information Model Specification. Developers can choose how much or how little to implement.

DER information models aim to achieve the following:

- Adhere to the SunSpec Device Information Model specification.
- Support all DER interoperability functionality specified in IEEE 1547-2018.
- Define consistent implementation guidelines for all DERs that make it easy for developers to implement interoperable DER solutions.

1.1 Document Organization

Chapter 2 lists the standards documents that are normative references for this document.

Chapter 3 provides an introduction to DER management functions and the application of the DER Information Models.

Chapter 4 provides a detailed specification for each of the standardized SunSpec DER Information Models, specifying points, point groups, and their valid attributes and values.

1.2 Terminology

Definition element

Definition elements are associated with a Device Information Model and describe the model data structure and usage. A definition element can have a value or provide a container for other elements. The Device Information Model defines the following elements:

- model
- point
- point group
- symbol
- comment

Definition elements have attributes that qualify or describe the element.

Device

A device is an entity that exchanges data across communications interfaces. A device has a data set, modeled by Device Information Models, that describes physical and state information about the device. The device data set is the set of logically-related data points specific to the device type. The collections of Device Information Models that describe the data set correspond to the full set of device data points supported by the device.

Device Information Model

The Device Information Model is used to structure device data for exchange across communications interfaces. The model provides a mechanism for specifying the data set supported by a device, which consists of a set of standardized definition elements.

Device Information Model definition

A Device Information Model definition specifies the data points that make up the particular Device Information Model and the usage information associated with each data point. There is one definition for each Device Information Model. Device Information Model definitions represent collections of device data points. The canonical form of Device Information Model definitions are specified using JSON encoding.

Device Information Model instance

A Device Information Model instance is created from a Device Information Model definition. The instance includes data point values specified for each of the defined data points. There can be any number of instances of a Device Information Model.

May trip

A set of conditions where a DER is allowed to trip but is not required to trip.

Model A Device Information Model *model* element defines a logical

grouping of points. Each model has a unique model ID.

Momentary cessation Suspension of injection of active power based on current conditions.

It implies the ability to resume injection immediately on a change of

conditions.

MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT.

SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification, are to be interpreted as described in IETE RFC 2119.

Must trip A set of conditions where a DER must trip.

Point A Device Information Model *point* element defines a device data

point and has a value.

Point group A Device Information Model *group* element contains a group of

points and/or other point groups.

Point group, top-level The top-level point group is the first element of a Device Information

Model and contains all other elements.

Reversion timer A timer that limits the duration of a control, which implies a behavior

to revert to on the termination of the control based on timer

expiration.

Symbol A Device Information Model *symbol* element defines a name-value

pair. It is used to represent a constant value associated with the

enumerated value or bit position of a point.

Trip Cessation of injection of power by the DER. Implies a set of

conditions must be met to resume injection of power.

2 Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, https://www.rfc-editor.org/info/rfc2119>.

IEEE 1547-2018, Standard for Interconnection and Interoperability of Distributed Energy Resources With Associated Electric Power Systems Interfaces, Apr. 2018, https://ieeexplore.ieee.org/document/8332112>.

SunSpec X99999; SunSpec Device Information Model Specification, version 0.1, May 2019.

3 Overview

This section presents the following general DER topics that apply to multiple information models:

- Curve management as applied to control functions that use linear curves to indicate the behavior associated with the function. Some information models have curve instances as data points.
- Reversion timers, which are used to limit the time a function operates with a specific set of settings.
- A trip/momentary cessation curve encoding for representing behavior during frequency and voltage disturbances.

3.1 Curve Management

Some control functions use piece-wise linear curves to indicate the behavior associated with the function. All functions that utilize curves have a set of curve management points, which can be updated to modify basic curve management functionality:

Symbol	Description	Access
Ena	Determines if the function is enabled or disabled.	read/write
AdptCrvReq	Select a new curve setting.	read/write
AdptCrvRslt	Result of the AdptCrvReq operation.	read-only
NPt	Number of possible curve points in each curve instance.	read-only
NCrv	Number of curve instances.	read-only
ActPt	Number of active points in the curve	read/write

Table 1: Curve Management Points

3.1.1 Curve Layout

A control function information model that uses a curve contains a configurable number of curves that have a configurable number of points:

- number of curves (NCrv)
- number of points in each curve (NPt)

Device Information Model curve instances occupy sequential locations in the information model. Each curve instance is represented by a sequential set of points that together define the behavior associated with the curve function. Each point is represented by one or more values, and the NPt point specifies the number of possible points in each curve instance. The ActPt point specifies the number of points that are currently active in the curve.

A Device Information Model that uses curves SHALL contain at least two curve instances. The first curve instance is a read-only curve instance that contains the current curve settings. Subsequent curve instances hold curve settings that can be used to update the current curve settings.

3.1.2 Curve Update

The enable point (Ena) determines if the function is enabled or disabled. If the enable point is set to zero (0) the function is disabled, and the setting associated with the function SHALL NOT be effective. If the enable point is set to one (1), the function SHALL be enabled, and the settings are active based on other points in the information model.

New curve settings SHALL be selected by writing one of the curve indexes to the adopt curve request point (AdptCrvReq). The index value SHALL be greater than one (1), which is the index of the active curve. This operation SHALL cause the settings located at the specified curve index to be copied to the active curve settings. The result of the operation SHALL update the adopt curve result point (AdptCrvRslt) with one of the following values:

- IN PROGRESS
- COMPLETED
- FAILED

If the result is COMPLETED, reading the curve settings at curve index one (1) SHALL reflect the updated settings.

If a set of active curve settings update is in progress, the current curve settings SHALL remain active until the updated curve settings are accepted and made operational. If the update fails, the current settings SHALL remain effective without interruption.

3.2 Reversion Timers

A reversion timer SHALL be used to limit the time a function operates with a specific set of settings. If a reversion timer is enabled for a function and the timer expires without an update, the function SHALL revert to an alternate set of settings. If a setting is updated while the reversion timer is active or the function is re-enabled, the reversion timer SHALL be reinitialized with the reversion timeout value, and the timer is restarted.

The following data points SHALL manage reversion timer functionality:

- reversion timeout value (RvrtTms)
- reversion time remaining (RvrtRem)
- alternate, function-dependent revision settings

The following figure shows reversion timer states and state transition events:

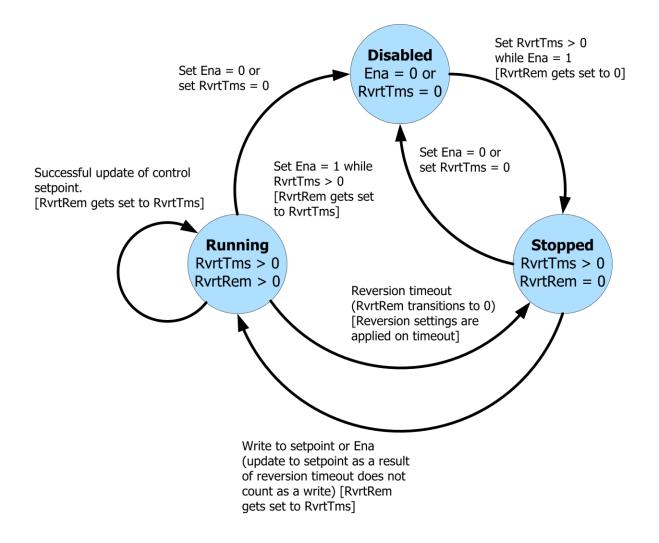


Figure 1: Reversion Timer States

A reversion timer SHALL be in one of the following states:

- Disabled
- Stopped
- Running

If a reversion timer is in the Disabled state, the reversion timer SHALL not affect the current function settings. In this state, the function SHALL be either not enabled or the reversion timeout value SHALL be set to zero (0).

If a reversion timer is in the Stopped state, the reversion timer SHALL not affect the current function settings. If a function setting is changed or the function re-enabled, the reversion timer SHALL be reinitialized with the reversion timeout value, and the timer SHALL be restarted.

If the reversion timer is in the Running state, the reversion time remaining SHALL indicate the time interval remaining until the reversion timer expires. When the revision timer expires, the specified alternate set of function settings SHALL be applied to the function and the reversion timer transitions to the Stopped state.

3.3 Modbus Enable

Since most of grid support functions in SunSpec Modbus have an enable field, the function or setting comes into effect only when this field is ENABLED. This is an enum field with the following values:

- 1. 0 (DISABLED)
- 2. 1 (ENABLED)

When the enable field is set to 0, any changes made to the setting will not take effect. For example, if the 704. WMaxLimPct is set to 90% but 704. WMaxLimPctEna = 0, the WMaxLimPCt register will have the value of 90% but the DER will not limit the active power to 90% of its nameplate rating. When the WMaxLimPctEna is set to 1, this update will take effect, and the DER will limit the active power to 90%.

If an enable is set to 1, any changes to the corresponding settings will be applied to the DER. Rewriting the enable is not required for the changes to be applied.

3.4 Trip/Momentary Cessation Settings

This section presents general information about the trip and momentary cessation settings for frequency and voltage disturbances.

3.4.1 Terminology Clarification

Historically, in communications information models, the term "ride-through" has been used as the general term referring to settings associated with voltage and frequency disturbance. However, IEEE 1547-2018 indicates that "ride-through" is a capability and that the term "ride-through" should not be used for settings. The preferred term that has been proposed generally is "disturbance response settings". It is recommended that the term "ride-through" SHOULD NOT be used to describe the settings.

3.4.2 Trip/Momentary Cessation Region Representation

It is desirable to use a flexible mechanism to represent voltage and frequency trip regions and to handle as many use cases as possible. For example, the curves in some standards¹ require diagonal segments that cannot be represented using rectangular regions.

The trip and momentary cessation curves can be represented as piece-wise linear curves that define the regions associated with voltage and frequency trip, and momentary cessation behavior.

¹ European Network Code Requirements for Generators (RfG), "ENTSO-E Network Code for Requirements for Grid Connection Applicable to all Generators," 2016.

Most threshold requirements can be represented by providing a method that defines the following three regions.

Region	DER Behavior	Precedence Hierarchy
trip	When the <i>trip</i> region is entered, the DER SHALL trip.	1 (highest)
may trip	When the <i>may trip</i> region is entered, the DER may either continue in its current operational mode or trip.	3
momentary cessation	When the <i>momentary cessation</i> region is entered, the DER SHALL cease to energize but SHALL NOT trip.	2

Table 2: Voltage and Frequency Trip Regions

Each region boundary is defined by a piece-wise linear curve such that when crossing the *may trip* curve, the DER is in the *may trip* region.

When crossing a curve of higher precedence, the DER SHALL assume the behavior of the higher precedence.

The difference between the *trip* and *momentary cessation* is the process of resuming operation after that region has been entered. The general distinction is that resumption from *momentary cessation* may be done fully and immediately on leaving the region, while resumption from *trip* may require additional considerations such as a delay and ramping operation. The exact resumption process may vary based on grid code and additional parameters. Because of the limits of some DERs, galvanic isolation may or may not be provided on a *trip*.

The following figure shows an example of the IEEE 1547-2018 trip/momentary cessation curves for voltage, and Table 4 shows curve points for the voltage example reference.

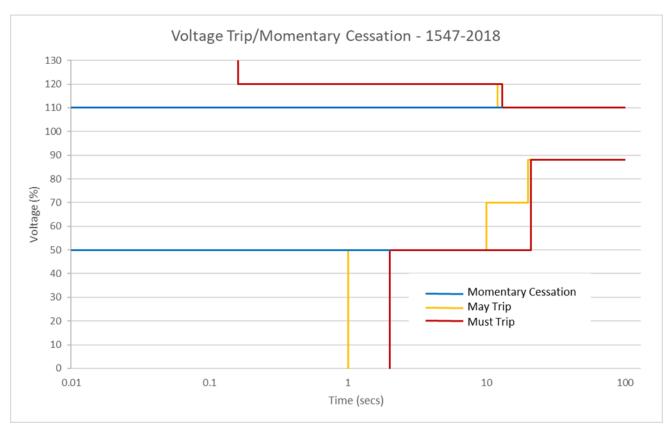


Figure 2: Voltage Trip/Momentary Cessation

Curve	Points
LV Trip	(0, 2), (.5, 2), (.5, 21), (.88, 21), (.88, 22)
LV Momentary Cessation	(.5, 0), (.5, 2)
LV May Trip	(0, 1), (.5, 1), (.5, 10), (.7, 10), (.7, 20), (.88, 20), (.88, 22)
HV Trip	(1.3,.16), (1.2, .16), (1.2, 13), (1.1, 13), (1.1, 14)
HV Momentary Cessation	(1.1, 0), (1.1, 14)
HV May Trip	(1.3,.16), (1.2, .16), (1.2, 12), (1.1, 12), (1.1, 14)

Table 3: Voltage Trip/Momentary Cessation Points

3.4.3 Configuration

A DER is typically configured with only the trip and momentary cessation curves, provided the behavior complies with the interconnection certification standard. The *may trip* curve can be useful if the DER makes use of the optional regions. The *may trip* curve represents the minimum ride-through requirements.

Currently, frequency disturbance response standards do not include momentary cessation regions so only the *trip* curve SHALL be required. An optional *may trip* curve MAY be configured.

Curves are assumed to extend infinitely vertically from the first point on the curve (positive voltage direction for HV and negative voltage direction for LV), and horizontally (positive time) from the last point on the curve.

It is recognized that DERs might have significant limitations on the shape of the curves it can support. Many DERs might only be able to support curves with vertical and horizontal curve segments within very specific ranges.

3.5 Mandatory/Optional Points

The designation of points in a model as mandatory is based on the core functionality of the model. If a model would be become non-functional without the point being implemented, it is defined as mandatory. This designation is not meant to represent requirements for any other standard or jurisdiction. Refer to the specific standards or jurisdictional guides for implementation requirements.

4 DER Information Models

This section describes each of the SunSpec DER Information Models:

- DER AC Measurement
- DER Capacity
- DER Enter Service
- DER AC Controls
- DER Volt-Var
- DER Volt-Watt
- DER Trip LV
- DER Trip HV
- DER Trip LF
- DER Trip HF
- DER Frequency Droop
- DER Watt-Var
- DER Storage Capacity
- DER DC Measurement

These models provide a standardized way to implement communication protocols of DERs for common DER management functions. Each model specification includes a point summary for the model followed by a detailed description of each point. Points that are part of a point group are indicated in the descriptions.

The summary tables list the following attributes for each point of the model:

Point or Point Group name	The Point or Point Group name field is the acronym associated
	with the point. A Point Group has a name and a type and
	includes the points below it, as indicated by indentation.

Point label The Point label field

Point data typeThe Point data type field specifies the data type of the point.

Point access capabilityThe Point access capability field specifies whether the point is

read-only (R) or read-write (RW).

Point implementation requirement

The Point implementation requirement field specifies whether

the point is mandatory (M), or optional (O).

Point value mutability The Point value mutability field specifies if the value is static (S)

or not.

The detailed point description of each point in a model includes:

- Point or point group name, which is the same as the name in the point summary table.
- Detailed description of the point or point group, including enumerated values for the point.

4.1 DER AC Measurement (701)

The DER AC Measurement information model contains the measurement data associated with the DER along with current status and alarm information. Neither the status nor the alarm information points are latched. They both reflect the current state of the DER and change when that status or alarm state changes.

Group/Point Name	Label	Data Type	RW Access (RW)	Mandatory (M)	Static (S)
DERMeasureAC	DER AC Measurement	group			I.
ID	DER AC Measure Model ID	uint16		M	S
L	DER AC Measure Model Length	uint16		M	S
ACType	AC Wiring Type	enum16		M	
St	Operating State	enum16			
InvSt	Inverter State	enum16			
ConnSt	Grid Connection State	enum16			
Alrm	Alarm Bitfield	bitfield32			
DERMode	DER Operational Characteristics	bitfield32			
W	Active Power	int16			
VA	Apparent Power	int16			
Var	Reactive Power	int16			
PF	Power Factor	uint16			
А	Total AC Current	int16			
LLV	Voltage LL	uint16			
LNV	Voltage LN	uint16			
Hz	Frequency	uint32			
TotWhInj	Total Energy Injected	unit64			
TotWhAbs	Total Energy Absorbed	unit64			
TotVarhInj	Total Reactive Energy Injected	unit64			
TotVarhAbs	Total Reactive Energy Absorbed	unit64			
TmpAmb	Ambient Temperature	int16			
TmpCab	Cabinet Temperature	int16			
TmpSnk	Heat Sink Temperature	int16			
TmpTrns	Transformer Temperature	int16			
TmpSw	IGBT/MOSFET Temperature	int16			
TmpOt	Other Temperature	int16			
WL1	Watts L1	int16			
VAL1	VA L1	int16			
VarL1	Var L1	int16			
PFL1	PF L1	uint16			
AL1	Amps L1	int16			

Group/Point Name	Label	Data Type	RW Access (RW)	Mandatory (M)	Static (S)
VL1L2	Phase Voltage L1- L2	uint16			
VL1	Phase Voltage L1-N	uint16			
TotWhInjL1	Total Watt-Hours Inj L1	uint64			
TotWhAbsL1	Total Watt-Hours Abs L1	uint64			
TotVarhInjL1	Total Var-Hours Inj L1	uint64			
TotVarhAbsL1	Total Var-Hours Abs L1	uint64			
WL2	Watts L2	int16			
VAL2	VA L2	int16			
VarL2	VAR L2	int16			
PFL2	PF L2	uint16			
AL2	Amps L2	int16			
VL2L3	Phase Voltage L2- L3	uint16			
VL2	Phase Voltage L2-N	uint16			
TotWhInjL2	Total Watt-Hours Inj L2	uint64			
TotWhAbsL2	Total Watt-Hours Abs L2	uint64			
TotVarhInjL2	Total Var-Hours Inj L2	uint64			
TotVarhAbsL2	Total Var-Hours Abs L2	uint64			
WL3	Watts L3	int16			
VAL3	VA L3	int16			
VarL3	Var L3	int16			
PFL3	PF L3	uint16			
AL3	Amps L3	int16			
VL3L1	Phase Voltage L3- L1	uint16			
VL3	Phase Voltage L3-N	uint16			
TotWhInjL3	Total Watt-Hours Inj L3	uint64			
TotWhAbsL3	Total Watt-Hours Abs L3	uint64			
TotVarhInjL3	Total Var-Hours Inj L3	uint64			
TotVarhAbsL3	Total Var-Hours Abs L3	uint64			
ThrotPct	Throttling in Pct	uint16			
ThrotSrc	Throttle Source Information	bitfield32			
A_SF	Current Scale Factor	sunssf			S
V_SF	Voltage Scale Factor	sunssf			S
Hz_SF	Frequency Scale Factor	sunssf			S
W_SF	Active Power Scale Factor	sunssf			S
PF_SF	Power Factor Scale Factor	sunssf			S
VA_SF	Apparent Power Scale Factor	sunssf			S
Var_SF	Reactive Power Scale Factor	sunssf			S

Group/Point Name	Label	Data Type	RW Access (RW)	Mandatory (M)	Static (S)
TotWh_SF	Active Energy Scale Factor	sunssf			S
TotVarh_SF	Reactive Energy Scale Factor	sunssf			S
Tmp_SF	Temperature Scale Factor	sunssf			S
MnAlrmInfo	Manufacturer Alarm Info	string			

Table 4: DER AC Measurement Points

DERMeasureAC Points

DERMeasureAC DER AC measurement model.

ID DER AC measurement model ID.

L DER AC measurement model length.

ACType AC wiring type:

SINGLE_PHASE (0) = Single Phase SPLIT_PHASE (1) = Split Phase THREE_PHASE (2) = Three Phase

St Operating state of the DER:

OFF (0) = OffON (1) = On

InvSt Inverter state:

OFF(0) = Off

SLEEPING (1) = Sleeping STARTING (2) = Starting

RUNNING (3) = Running

THROTTLED (4) = Active Power Throttled SHUTTING DOWN (5) = Shutting Down

FAULT (6) = Fault STANDBY (7) = Standby

ConnSt Grid connection state:

DISCONNECTED (0) = Disconnected

CONNECTED (1) = Connected

Alrm Active alarms for the DER:

GROUND_FAULT(0) = Ground Fault

DC_OVER_VOLT (1) = DC Over Voltage

AC_DISCONNECT (2) = AC Disconnect Open

DC_DISCONNECT (3) = DC Disconnect Open

GRID_DISCONNECT (4) = Grid Disconnect

CABINET OPEN (5) = Cabinet Open

MANUAL SHUTDOWN (6) = Manual Shutdown

OVED TEMP (7) = Over Temperature

OVER_TEMP (7) = Over Temperature

OVER_FREQUENCY (8) = Frequency Above Limit
UNDER_FREQUENCY (9) = Frequency Under Limit
AC_OVER_VOLT (10) = AC Voltage Above Limit
AC_UNDER_VOLT (11) = AC Voltage Under Limit

BLOWN STRING FUSE (12) = Blown String Fuse on Input

UNDER TEMP (13) = Under Temperature

MEMORY LOSS (14) = Generic Memory or Communication Error (Internal)

HW_TEST_FAILURE (15) = Hardware Test Failure
MANUFACTURER ALRM (16) = Manufacturer Alarm

DERMode DER operational characteristics:

GRID_FOLLOWING (0) = Grid Following
GRID_FORMING (1) = Grid Forming
PV CLIPPED (2) = PV Output Clipped

W Scale Factor: W SF

Units: W

Total active power.

VA Scale Factor: VA SF

Units: VA

Total apparent power.

VAR Scale Factor: Var SF

Units: Var

Total reactive power.

PF Scale Factor: PF SF

Power factor.

A Scale Factor: A_SF

Units: A

Total AC current.

LLV Scale Factor: V_SF

Units: V

Line to line AC voltage as an average of active phases.

LNV Scale Factor: V_SF

Units: V

Line to neutral AC voltage as an average of active phases.

Hz Scale Factor: Hz_SF

Units: Hz

AC frequency.

TotWhInj Scale Factor: TotWh SF

Units: Wh

Total active energy injected (Quadrants 1 & 4).

TotWhAbs Scale Factor: TotWh SF

Units: Wh

Total active energy absorbed (Quadrants 2 & 3).

TotVarhInj Scale Factor: TotVarh SF

Units: Varh

Total reactive energy injected (Quadrants 1 & 2).

TotVarhAbs Scale Factor: TotVarh_SF

Units: Varh

Total reactive energy absorbed (Quadrants 3 & 4).

TmpAmb Scale Factor: Tmp_SF

Units: C

Ambient temperature.

TmpCab Scale Factor: Tmp_SF

Units: C

Cabinet temperature.

TmpSnk Scale Factor: Tmp_SF

Units: C

Heat sink temperature.

TmpTrns Scale Factor: Tmp_SF

Units: C

Transformer temperature.

TmpSw Scale Factor: Tmp_SF

Units: C

IGBT/MOSFET temperature.

TmpOt Scale Factor: Tmp_SF

Units: C

Other temperature.

 $\mathtt{WL1}$ Scale Factor: $\mathtt{W}_{\mathtt{SF}}$

Units: W

Active power L1.

VAL1 Scale Factor: VA_SF

Units: VA

Apparent power L1.

VarL1 Scale Factor: Var_SF

Units: Var

Reactive power L1.

PFL1 Scale Factor: PF_SF

Power factor phase L1.

AL1 Scale Factor: A_SF

Units: A

Current phase L1.

VL1L2 Scale Factor: V_SF

Units: V

Phase voltage L1-L2.

VL1 Scale Factor: V_SF

Units: V

Phase voltage L1-N.

TotWhInjL1 Scale Factor: TotWh SF

Units: Wh

Total active energy injected L1.

TotWhAbsL1 Scale Factor: TotWh SF

Units: Wh

Total active energy absorbed L1.

TotVarhInjL1 Scale Factor: TotVarh_SF

Units: Varh

Total reactive energy injected L1.

TotVarhAbsL1 Scale Factor: TotVarh SF

Units: Varh

Total reactive energy absorbed L1.

 $\mathtt{WL2}$ Scale Factor: $\mathtt{W}_{\mathtt{SF}}$

Units: W

Active power L2.

VAL2 Scale Factor: VA SF

Units: VA

Apparent power L2.

VarL2 Scale Factor: Var_SF

Units: Var

Reactive power L2.

PFL2 Scale Factor: PF_SF

Power factor L2.

AL2 Scale Factor: A_SF

Units: A

Current L2.

VL2L3 Scale Factor: V_SF

Units: V

Phase voltage L2-L3.

VL2 Scale Factor: V_SF

Units: V

Phase voltage L2-N.

TotWhInjL2 Scale Factor: TotWh SF

Units: Wh

Total active energy injected L2.

TotWhAbsL2 Scale Factor: TotWh SF

Units: Wh

Total active energy absorbed L2.

TotVarhInjL2 Scale Factor: TotVarh SF

Units: Varh

Total reactive energy injected L2.

TotVarhAbsL2 Scale Factor: TotVarh SF

Units: Varh

Total reactive energy absorbed L2.

 $\mathtt{WL3}$ Scale Factor: $\mathtt{W}_{\mathtt{SF}}$

Units: W

Active power L3.

VAL3 Scale Factor: VA_SF

Units: VA

Apparent power L3.

VarL3 Scale Factor: Var_SF

Units: Var

Reactive power L3.

PFL3 Scale Factor: PF_SF

Power factor L3.

AL3 Scale Factor: A_SF

Units: A

Current L3.

VL3L1 Scale Factor: V_SF

Units: V

Phase voltage L3-L1.

VL3N Scale Factor: V_SF

Units: V

Phase voltage L3-N.

TotWhInjL3 Scale Factor: TotWh SF

Units: Wh

Total active energy injected L3.

TotWhAbsL3 Scale Factor: TotWh SF

Units: Wh

Total active energy absorbed L3.

TotVarhInjL3 Scale Factor: TotVarh_SF

Units: Varh

Total reactive energy injected L3.

TotVarhAbsL3 Scale Factor: TotVarh SF

Units: Varh

Total reactive energy absorbed L3.

ThrotPct Throttling in Pct of maximum active power.

Units: Pct

ThrotSrc Active throttling source:

MAX W(0) = Maximum Active Power Limit

FIXED_W (1) = Fixed Active Power FIXED_VAR (2) = Fixed Reactive Power FIXED_PF (3) = Fixed Power Factor VOLT_VAR (4) = Volt-Var Function FREQ_WATT (5) = Freq-Watt Function

DYN REACT CURR (6) = Dynamic Reactive Current

LVRT (7) = Low Voltage Ride-through
HVRT (8) = High Voltage Ride-through
WATT_VAR (9) = Watt-Var Function
VOLT WATT (10) = Volt-Watt Function

SCHEDULED (11) = Scheduled

LFRT (12) = Low Frequency Ride-through HFRT (13) = High Frequency Ride-through

DERATED (14) = Derated

A SF Current scale factor.

V_SF Voltage scale factor.

Hz SF Frequency scale factor.

W SF Active power scale factor.

PF SF Power factor scale factor.

VA_SF Apparent power scale factor.

VAR SF Reactive power scale factor.

TotWh_SF Active energy scale factor.

TotVarh_SF Reactive energy scale factor.

Tmp_SF Temperature scale factor.

Manufacturer alarm information. Valid if MANUFACTURER_ALRM indication is

active.

4.2 DER Capacity (702)

The DER Capacity information model contains ratings for the DER that are read-only and settings for the DER that can be used to override some ratings.

The settings that are made available in an installation SHOULD default to the rating value. If a setting is adjusted from the default value, the setting value SHALL be used in place of the associated rating for any functions that use that rating to determine functional behavior.

Group/Point Name	Label	Data Type	RW Access (RW)	Mandatory (M)	Static (S)
DERCapacity	DER Capacity	group			I.
ID	DER Capacity Model ID	uint16		M	S
L	DER Capacity Model Length	uint16		M	S
WMaxRtg	Active Power Max Rating	uint16			S
WOvrExtRtg	Active Power (Over-Excited) Rating	uint16			S
WOvrExtRtgPF	Specified Over-Excited PF	uint16			S
WUndExtRtg	Active Power (Under-Excited) Rating	uint16			S
WUndExtRtgPF	Specified Under-Excited PF	uint16			S
VAMaxRtg	Apparent Power Max Rating	uint16			S
VarMaxInjRtg	Reactive Power Injected Rating	uint16			S
VarMaxAbsRtg	Reactive Power Absorbed Rating	uint16			S
WChaRteMaxRtg	Charge Rate Max Rating	uint16			S
WDisChaRteMaxRtg	Discharge Rate Max Rating	uint16			S
VAChaRteMaxRtg	Charge Rate Max VA Rating	uint16			S
VADisChaRteMaxRtg	Discharge Rate Max VA Rating	uint16			S
VNomRtg	AC Voltage Nominal Rating	uint16			S
VMaxRtg	AC Voltage Max Rating	uint16			S
VMinRtg	AC Voltage Min Rating	uint16			S
AMaxRtg	AC Current Max Rating	uint16			S
PFOvrExtRtg	PF Over-Excited Rating	uint16			S
PFUndExtRtg	PF Under-Excited Rating	uint16			S
ReactSusceptRtg	Reactive Susceptance	uint16			S
NorOpCatRtg	Normal Operating Category	enum16			S
AbnOpCatRtg	Abnormal Operating Category	enum16			S
CtrlModes	Supported Control Modes	bitfield32			S
IntIslandCatRtg	Intentional Island Categories	Bitfield16			S
WMax	Active Power Max Setting	uint16	RW		
WMaxOvrExt	Active Power (Over-Excited) Setting	uint16	RW		
WOvrExtPF	Specified Over-Excited PF	uint16	RW		

Group/Point Name	Label	Data Type	RW Access (RW)	Mandatory (M)	Static (S)
WMaxUndExt	Active Power (Under-Excited) Setting	uint16	RW		
WUndExtPF	Specified Under-Excited PF	uint16	RW		
VAMax	Apparent Power Max Setting	uint16	RW		
VarMaxInj	Reactive Power Injected Setting	uint16	RW		
VarMaxAbs	Reactive Power Absorbed Setting	uint16	RW		
WChaRteMax	Charge Rate Max Setting	uint16	RW		
WDisChaRteMax	Discharge Rate Max Setting	uint16	RW		
VAChaRteMax	Charge Rate Max VA Setting	uint16	RW		
VADisChaRteMax	Discharge Rate Max VA Setting	uint16	RW		
VNom	Nominal AC Voltage Setting	uint16	RW		
VMax	AC Voltage Max Setting	uint16	RW		
VMin	AC Voltage Min Setting	uint16	RW		
AMax	AC Current Max Setting	uint16	RW		
PFOvrExt	PF Over-Excited Setting	uint16	RW		
PFUndExt	PF Under-Excited Setting	uint16	RW		
IntIslandCat	Intentional Island Categories	bitfield16	RW		
W_SF	Active Power Scale Factor	sunssf			S
PF_SF	Power Factor Scale Factor	sunssf			S
VA_SF	Apparent Power Scale Factor	sunssf			S
Var_SF	Reactive Power Scale Factor	sunssf			S
V_SF	Voltage Scale Factor	sunssf			S
A_SF	Current Scale Factor	sunssf			S
S_SF	Susceptance Scale Factor	sunssf			S

Table 5: DER Capacity Points

DERCapacity Points

DERCapacity DER capacity model.

ID DER capacity model ID.

L DER capacity model length.

WMaxRtg Scale Factor: W SF

Units: W

Maximum active power rating at unity power factor in watts.

WOVrExtRtg Scale Factor: W SF

Units: W

Active power rating at specified over-excited power factor in watts.

WOVrExtRtgPF Scale Factor: PF SF

Specified over-excited power factor.

WUndExtRtg Scale Factor: W SF

Units: W

Active power rating at specified under-excited power factor in watts.

WUndExtRtgPF Scale Factor: PF SF

Specified under-excited power factor.

VAMaxRtg Scale Factor: VA_SF

Units: VA

Maximum apparent power rating in volt-amperes.

VarMaxInjRtg Scale Factor: Var SF

Units: Var

Maximum injected reactive power rating in vars.

VarMaxAbsRtg Scale Factor: Var SF

Units: Var

Maximum absorbed reactive power rating in vars.

WChaRteMaxRtg Scale Factor: W SF

Units: W

Maximum active power charge rate in watts.

WDisChaRteMaxRtg Scale Factor: W_SF

Units: W

Maximum active power discharge rate in watts.

VAChaRteMaxRtg Scale Factor: VA SF

Units: VA

Maximum apparent power charge rate in volt-amperes.

VADisChaRteMaxRtg Scale Factor: VA SF

Units: VA

Maximum apparent power discharge rate in volt-amperes.

VNomRtg Scale Factor: V SF

Units: \lor

AC voltage nominal rating.

VMaxRtg Scale Factor: V_SF

Units: V

AC voltage maximum rating.

VMinRtg Scale Factor: V SF

Units: V

AC voltage minimum rating.

AMaxRtg Scale Factor: A SF

Units: A

AC current maximum rating in amps.

PFOvrExtRtg Scale Factor: PF_SF

Power factor over-excited rating.

PFUndExtRtg Scale Factor: PF_SF

Power factor under-excited rating.

ReactSusceptRtg

Scale Factor: S_SF

Units: S

Reactive susceptance that remains connected to the Area EPS in the cease to energize and trip state.

NorOpCatRtg

Normal operating performance category as specified in IEEE 1547-2018:

$$CAT_A(0) = Category A$$

 $CAT_B(1) = Category B$

AbnOpCatRtg

Abnormal operating performance category as specified in IEEE 1547-2018:

```
CAT_1 (0) = Category I
CAT_2 (1) = Category II
CAT_3 (2) = Category III
```

CtrlModes

Supported control mode functions:

```
MAX_W(0) = Limit Maximum Active Power

FIXED_W (1) = Fixed Active Power

FIXED_VAR (2) = Fixed Reactive Power

FIXED_PF (3) = Fixed Power Factor

VOLT_VAR (4) = Volt-Var Function

FREQ_WATT (5) = Freq-Watt Function

DYN_REACT_CURR (6) = Dynamic Reactive Current Function

LV_TRIP (7) = Low-Voltage Trip

HV_TRIP (8) = High-Voltage Trip

WATT_VAR (9) = Watt-Var Function

VOLT_WATT (10) = Volt-Watt Function

SCHEDULED (11) = Scheduling

LF_TRIP (12) = Low-Frequency Trip

HF_TRIP (13) = High-Frequency Trip
```

IntIslandCatRtq

Intentional island categories:

```
UNCATEGORIZED (0) = Uncategorized
INT_ISL_CAPABLE (1) = Intentional Island-Capable
BLACK_START_CAPABLE (2) = Black Start-Capable
ISOCH_CAPABLE (3) = Isochronous-Capable
```

WMax

Scale Factor: W SF

Units: W

Maximum active power setting used to adjust maximum active power rating.

WMaxOvrExt Scale Factor: W_SF

Units: W

Active power setting at specified over-excited power factor in watts.

WOVrExtPF Scale Factor: PF SF

Specified over-excited power factor.

WMaxUndExt Scale Factor: W SF

Units: W

Active power setting at specified under-excited power factor in

watts.

WUNDEXTPF Scale Factor: PF SF

Specified under-excited power factor.

VAMax Scale Factor: VA SF

Units: VA

Maximum apparent power setting used to adjust maximum apparent

power rating.

VarMaxInj Scale Factor: Var SF

Units: Var

Maximum injected reactive power setting used to adjust maximum

injected reactive power rating.

VarMaxAbs Scale Factor: Var SF

Units: Var

Maximum absorbed reactive power setting used to adjust maximum

absorbed reactive power rating.

WChaRteMax Scale Factor: W SF

Units: W

Maximum active power charge rate setting used to adjust maximum

active power charge rate rating.

WDisChaRteMax Scale Factor: W_SF

Units: W

Maximum active power discharge rate setting used to adjust

maximum active power discharge rate rating.

VAChaRteMax Scale Factor: VA SF

Units: VA

Maximum apparent power charge rate setting used to adjust

maximum apparent power charge rate rating.

VADisChaRteMax Scale Factor: VA SF

Units: VA

Maximum apparent power discharge rate setting used to adjust

maximum apparent power discharge rate rating.

VNom Scale Factor: V_SF

Units: V

Nominal AC voltage setting.

VMax Scale Factor: V_SF

Units: V

AC voltage maximum setting used to adjust AC voltage maximum

rating.

VMin Scale Factor: V SF

Units: V

AC voltage minimum setting used to adjust AC voltage minimum

rating.

AMax Scale Factor: A SF

Units: A

Maximum AC current setting used to adjust maximum AC current

rating.

PFOvrExt Scale Factor: PF SF

Power factor over-excited setting.

PFUndExt Scale Factor: PF_SF

Power factor under-excited setting.

IntIslandCat Intentional island categories.

W_SF Active power scale factor.

PF_SF Power factor scale factor.

VA_SF Apparent power scale factor.

Var_SF Reactive power scale factor.

V_SF Voltage scale factor.

A_SF Current scale factor.

S_SF Susceptance scale factor.

4.3 DER Enter Service (703)

The DER Enter Service information model contains the Permit Enter Service point which determines if a DER is permitted to energize on the grid as well as points that contain the conditions that must be present to allow the DER to reenergize after tripping. If the Permit Enter Service is set to disabled while energized, the DER SHALL cease to energize and trip.

Group/Point Name	Label	Data Type	RW Access (RW)	Mandatory (M)	Static (S)
DEREnterService	Enter Service	group			
ID	Enter Service ID	uint16		M	S
L	Enter Service Length	uint16		M	S
ES	Permit Enter Service	enum16	RW		
ESVHi	Enter Service Voltage High	uint16	RW		
ESVLo	Enter Service Voltage Low	uint16	RW		
ESHzHi	Enter Service Frequency High	uint32	RW		
ESHzLo	Enter Service Frequency Low	uint32	RW		
ESDlyTms	Enter Service Delay Time	uint32	RW		
ESRndTms	Enter Service Random Delay	uint32	RW		
ESRmpTms	Enter Service Ramp Time	uint32	RW		
ESDlyRemTms	Enter Service Delay Remaining	uint32			
V_SF	Voltage Scale Factor	sunssf			S
Hz_SF	Frequency Scale Factor	sunssf			S

Table 6: DER Enter Service Points

DEREnterService Points

DEREnterService	Enter service.
ID	Enter service model ID.
L	Enter service model length.
ES	Permit enter service: DISABLED (0) = Cease to energize and trip, remain de-energized ENABLED (1) = Permitted to energize

ESVHi Scale Factor: V_SF

Units: Pct

Enter service voltage high threshold as a percent of normal voltage.

ESVLO Scale Factor: V SF

Units: Pct

Enter service voltage low threshold as a percent of normal voltage.

ESHzHi Scale Factor: Hz SF

Units: Hz

Enter service frequency high threshold

ESHzLo Scale Factor: Hz_SF

Units: Hz

Enter service frequency low threshold.

ESDlyTms Units: Secs

Enter service delay time in seconds.

ESRndTms Units: Secs

Enter service random delay in seconds.

ESRmpTms Units: Secs

Enter service ramp time in seconds.

ESDlyRemTms Units: Secs

Enter service delay remaining time in seconds.

V_SF Voltage scale factor.

Hz_SF Frequency scale factor.

4.4 DER AC Controls (704)

The DER AC Controls information model provides a group of immediate controls that include power factor when injecting power, power factor when absorbing power, limit active power, set active power, and set reactive power. Each control also provides reversion timer functionality that, if implemented, SHALL conform to the reversion timer behavior specified in 3.2 Reversion Timers

Synchronization groups are used for all power factor value pairs as they consist of a power factor and excitation value. The power factor and excitation values SHALL be processed atomically when read and written.

Group/Point Name	Label	Data Type	RW Access (RW)	Mandatory (M)	Static (S)
DERCt1AC	DER AC Controls	group			
ID	Model ID	uint16		M	S
L	Model Length	uint16		M	S
PFWInjEna	Power Factor (W Inj) Enable	enum16	RW		
PFWInjEnaRvrt	Power Factor (W Inj) Reversion Enable Setting	enum16	RW		
PFWInjRvrtTms	PF Reversion Time (W Inj)	uint32	RW		
PFWInjRvrtRem	PF Reversion Time Rem (W Inj)	uint32			
PFWAbsEna	Power Factor (W Abs) Enable	enum16	RW		
PFWAbsEnaRvrt	PF (W Abs) Reversion Enable Setting	enum16	RW		
PFWAbsRvrtTms	PF Reversion Time (W Abs)	uint32	RW		
PFWAbsRvrtRem	PF Reversion Time Rem (W Abs)	uint32			
WMaxLimPctEna	Limit Max Active Power Pct Enable	enum16	RW		
WMaxLimPct	Limit Max Power Pct Setpoint	uint16	RW		
WMaxLimPctRvrt	Reversion Limit Max Power Pct	uint16	RW		
WMaxLimPctEnaRvrt	Reversion Limit Max Power Pct Enable	enum16	RW		
WMaxLimPctRvrtTms	Limit Max Power Pct Reversion Time	uint32	RW		
WMaxLimPctRvrtRem	Limit Max Power Pct Rev Time Rem	uint32			
WSetEna	Set Active Power Enable	enum16	RW		
WSetMod	Set Active Power Mode	enum16	RW		
WSet	Active Power Setpoint (W)	int32	RW		

Group/Point Name	Label	Data Type	RW Access (RW)	Mandatory (M)	Statio (S)
WSetRvrt	Reversion Active Power (W)	int32	RW		
WSetPct	Active Power Setpoint (Pct)	int16	RW		
WSetPctRvrt	Reversion Active Power (Pct)	int16	RW		
WSetEnaRvrt	Reversion Active Power Enable	enum16	RW		
WSetRvrtTms	Active Power Reversion Time	uint32	RW		
WSetRvrtRem	Active Power Rev Time Rem	uint32			
VarSetEna	Set Reactive Power Enable	enum16	RW		
VarSetMod	Set Reactive Power Mode	enum16	RW		
VarSetPri	Set Reactive Power Priority	enum16	RW		
VarSet	Reactive Power Setpoint (Vars)	int32	RW		
VarSetRvrt	Reversion Reactive Power (Vars)	int32	RW		
VarSetPct	Reactive Power Setpoint (Pct)	int16	RW		
VarSetPctRvrt	Reversion Reactive Power (Pct)	int16	RW		
VarSetEnaRvrt	Reversion Reactive Power Enable	enum16	RW		
VarSetRvrtTms	Reactive Power Reversion Time	uint32	RW		
VarSetRvrtRem	Reactive Power Rev Time Rem	uint32			
WRmp	Normal Ramp Rate	uint16	RW		
WRmpRef	Normal Ramp Rate Reference	enum16	RW		
VarRmp	Reactive Power Ramp Rate	uint16	RW		
AntiIslEna	Anti-Islanding Enable	enum16	RW		
PF_SF	Power Factor Scale Factor	sunssf			S
WMaxLimPct_SF	Limit Max Power Scale Factor	sunssf			S
WSet_SF	Active Power Scale Factor	sunssf			S
WSetPct_SF	Active Power Pct Scale Factor	sunssf			S
VarSet_SF	Reactive Power Scale Factor	sunssf			S

Group/Point Name	Label	Data Type	RW Access (RW)	Mandatory (M)	Static (S)
VarSetPct_SF	Reactive Power Pct Scale Factor	sunssf			S
DERCtlAC.PFWInj	Power Factor (W Inj)	sync			
PF	Power Factor (W Inj)	uint16	RW		
Ext	Power Factor Excitation (W Inj)	enum16	RW		
DERCtlAC.PFWInjRvrt	Reversion Power Factor (W Inj)	sync			
PF	Reversion Power Factor (W Inj)	uint16	RW		
Ext	Reversion PF Excitation (W Inj)	enum16	RW		
DERCtlAC.PFWAbs	Power Factor (W Abs)	sync			
PF	Power Factor (W Abs)	uint16	RW		
Ext	Power Factor Excitation (W Abs)	enum16	RW		
DERCtlAC.PFWAbsRvrt	Reversion Power Factor (W Abs)	sync			
PF	Reversion Power Factor (W Abs)	uint16	RW		
Ext	Reversion PF Excitation (W Abs)	enum16	RW		

Table 7: DER AC Controls Points

DERCtIAC Points

DERCt1AC DER AC controls model.

DER AC controls model ID.

L DER AC controls model length.

PFWInjEna Power factor enable when injecting active power:

DISABLED (0) = Disabled ENABLED (1) = Enabled

PFWInjEnaRvrt Power factor reversion timer enable when injecting active power:

DISABLED (0) = Disabled ENABLED (1) = Enabled

PFWInjRvrtTms Units: Secs

Power factor reversion timer when injecting active power.

PFWInjRvrtRem Units: Secs

Power factor reversion time remaining when injecting active power.

PFWAbsEna Power factor enable when absorbing active power:

DISABLED (0) = Disabled ENABLED (1) = Enabled

PFWAbsEnaRvrt Power factor reversion timer enable when absorbing active power:

DISABLED (0) = Disabled ENABLED (1) = Enabled

PFWAbsRvrtTms Units: Secs

Power factor reversion timer when absorbing active power.

PFWAbsRvrtRem Units: Secs

Power factor reversion time remaining when absorbing active power.

WMaxLimPctEna Limit maximum active power percent enable:

DISABLED (0) = Disabled ENABLED (1) = Enabled

WMaxLimPct Scale Factor: WMaxLimPct SF

Units: Pct

Limit maximum active power value.

WMaxLimPctRvrt Scale Factor: WMaxLimPct SF

Units: Pct

Reversion limit maximum active power percent value.

WMaxLimPctEnaRvrt Reversion limit maximum active power percent value enable:

DISABLED (0) = Disabled ENABLED (1) = Enabled

WMaxLimPctRvrtTms Units: Secs

Limit maximum active power percent reversion time.

WMaxLimPctRvrtRem Units: Secs

Limit maximum active power percent reversion time remaining.

WSetEna Set active power enable:

DISABLED (0) = Disabled ENABLED (1) = Enabled

WSetMod Set active power mode:

W MAX PCT (0) = Active Power as Max Percent

WATTS (1) = Active Power as Watts

WSet Scale Factor: WSet SF

Units: W

Active power setting value in watts.

WSetRvrt Scale Factor: WSet_SF

Units: W

Reversion active power setting value in watts.

WSetPct Scale Factor: WSetPct SF

Units: Pct

Active power setting value as a percent.

WSetPctRvrt Scale Factor: WSetPct SF

Units: Pct

Reversion active power setting value as percent.

WSetEnaRvrt Reversion active power function enable:

DISABLED (0) = Disabled ENABLED (1) = Enabled

WSetRvrtTms Units: Secs

Set active power reversion time.

WSetRvrtRem Units: Secs

Set active power reversion time remaining.

VarSetEna Set reactive power enable:

DISABLED (0) = Disabled ENABLED (1) = Enabled

VarSetMod Set reactive power mode:

W_MAX_PCT (0) = Reactive Power as Watt Max Pct
VAR_MAX_PCT (1) = Reactive Power as Var Max Pct
VAR_AVAIL_PCT (2) = Reactive Power as Var Avail Pct
VA MAX PCT (3) = Reactive Power as VA Max Pct

VARS (4) = Reactive Power as Vars

VarSetPri Reactive power priority:

ACTIVE (0) = Active Power Priority
REACTIVE (1) = Reactive Power Priority
VENDOR (2) = Vendor Power Priority

VarSet Scale Factor: VarSet SF

Units: Var

Reactive power setting value in vars.

VarSetRvrt Scale Factor: VarSet SF

Units: Var

Reversion reactive power setting value in vars.

VarSetPct Scale Factor: VarSetPct SF

Units: Pct

Reactive power setting value as a percent.

VarSetPctRvrt Scale Factor: VarSetPct SF

Units: Pct

Reversion reactive power setting value as a percent.

VarSetPctEnaRvrt Reversion reactive power function enable:

DISABLED (0) = Disabled ENABLED (1) = Enabled

VarSetRvrtTms Units: Secs

Set reactive power reversion time.

VarSetRvrtRem Units: Secs

Set reactive power reversion time remaining.

WRmp Units: %Max/Sec

Ramp rate for increases in active power during normal generation.

WRmpRef Ramp rate reference unit for increases in active power or current

during normal generation:

A_MAX (0) = Max Current Ramp
W MAX (1) = Max Active Power Ramp

VarRmp Units: %Max/Sec

Ramp rate based on max reactive power per second.

Anti-islanding enable:

DISABLED (0) = Disabled ENABLED (1) = Enabled

PF SF Power factor scale factor.

WMaxLimPct SF Limit maximum power percent scale factor.

WSet_SF Active power scale factor.

WSetPct_SF Active power pct scale factor.

VarSet_SF Reactive power scale factor.

VarSetPct_SF Reactive power pct scale factor.

DERCt1AC. PFWInj Power factor setpoint when injecting active power.

PF Scale Factor: PF SF

Power factor setpoint when injecting active power.

Ext Power factor excitation setpoint when injecting active power:

OVER_EXCITED(0) = Over-excited
UNDER EXCITED(1) = Under-excited

DERCtlAC. PFWInjRvrt Reversion power factor setpoint when injecting active power.

PF Scale Factor: PF SF

Reversion power factor setpoint when injecting active power.

Ext Reversion power factor excitation setpoint when injecting active

power:

OVER_EXCITED (0) = Over-Excited
UNDER EXCITED (1) = Under-Excited

DERCt1AC. PFWAbs Power factor setpoint when absorbing active power.

PF Scale Factor: PF SF

Power factor setpoint when absorbing active power.

Ext Power factor excitation setpoint when absorbing active power:

OVER_EXCITED (0) = Over-Excited
UNDER EXCITED (1) = Under-Excited

DERCt1AC. PFWAbsRvrt Reversion power factor setpoint when absorbing active power.

PF Scale Factor: PF_SF

Reversion power factor setpoint when absorbing active power.

Ext Reversion power factor excitation setpoint when absorbing active

power:

OVER_EXCITED (0) = Over-Excited
UNDER EXCITED (1) = Under-Excited

4.5 DER Volt-Var (705)

The DER Volt-Var information model supports the setting of volt-var controls as piece-wise linear curves. The model allows multiple curves to be supported. The implementation SHALL provide the curve support behavior specified in 3.1, Curve Management.

Group/Point Name	Label	Data Type	RW Access (RW)	Mandatory (M)	Static (S)
DERVoltVar	DER Volt-Var	group			I.
ID	Model ID	uint16		M	S
L	Model Length	uint16		M	S
Ena	Module Enable	enum16	RW	M	
AdptCrvReq	Adopt Curve Request	uint16	RW	M	
AdptCrvRslt	Adopt Curve Result	enum16		M	
NPt	Number of Points	uint16		M	S
NCrv	Stored Curve Count	uint16		M	S
RvrtTms	Reversion Timeout	uint32	RW		
RvrtRem	Reversion Time Remaining	uint32			
RvrtCrv	Reversion Curve	uint16	RW		
V_SF	Voltage Scale Factor	sunssf		M	S
DeptRef_SF	Var Scale Factor	sunssf		M	S
RspTms_SF	Open-Loop Scale Factor	sunssf		M	S
DERVoltVar.Crv	Stored Curves	group			
ActPt	Active Points	uint16	RW	M	
DeptRef	Dependent Reference	enum16	RW	M	
Pri	Power Priority	enum16	RW		
VRef	Vref Adjustment	uint16	RW		
VRefAuto	Current Autonomous Vref	uint16			
VRefAutoEna	Autonomous Vref Enable	enum16	RW		
VRefAutoTms	Auto Vref Time Constant	uint16	RW		
RspTms	Open Loop Response Time	uint32	RW		
ReadOnly	Curve Access	enum16		M	S
DERVoltVar.Crv.Pt	Stored Curve Points	group			
V	Voltage Point	uint16	RW		
Var	Reactive Power Point	int16	RW		

Table 8: DER Volt-Var Points

DERVoltVar Points

DER Volt-Var model.

ID DER Volt-Var model ID.

L DER Volt-Var model length.

Ena Volt-Var control enable:

DISABLED (0) = Disabled ENABLED (1) = Enabled

AdptCrvReq Index of curve points to adopt. First curve index is 1.

AdptCrvRslt Result of last set active curve operation:

IN_PROGRESS (0) = Update In Progress
COMPLETED (1) = Update Complete

FAILED (2) = Update Failed

NPt Number of curve points supported.

NCrv Number of stored curves supported.

RvrtTms Units: Secs

Reversion time in seconds. No reversion time = 0.

RvrtRem Reversion time remaining in seconds.

RvrtCrv Default curve after reversion timeout.

V SF Scale factor for curve voltage points.

DeptRef SF Scale factor for curve var points.

RspTms_SF Open loop response time scale factor.

DERVoltVar.Crv Stored Curves

ActPt Number of active points.

DeptRef Curve dependent reference:

W_MAX_PCT (0) = Percent Max Watts

VAR_MAX_PCT (1) = Percent Max Vars

VAR_AVAL_PCT (2) = Percent Available Vars

VAR_AVAL_PCT (3) = Percent Max Apparent Power

Pri Power priority:

ACTIVE (0) = Active power priority
REACTIVE (1) = Reactive power priority
VENDOR (2) = Vendor power priority

VRef Scale Factor: V SF

Units: VNomPct

Vref adjustment as a percentage of nominal voltage.

VRefAuto Scale Factor: V SF

Units: VNomPct

Autonomous Vref value as a percentage of nominal voltage.

VRefAutoEna Enable autonomous Vref:

DISABLED (0) = Disabled ENABLED (1) = Enabled

VRefAutoTms Units: Secs

Autonomous Vref time constant.

RspTms Scale Factor: RspTms SF

Units: Secs

Open loop response time.

ReadOnly Curve read-write access:

RW (0) = Read-Write Access R (1) = Read-Only Access

DERVoltVar.Crv.Pt Stored Curve Points

V Scale Factor: V_SF

Units: VNomPct

Curve voltage point as percentage.

Var Scale Factor: DeptRef SF

Units: DeptRef

Curve reactive power point as set in DeptRef point.

4.6 DER Volt-Watt (706)

The DER Volt-Watt information model supports the setting of volt-watt controls as piece-wise linear curves. The model allows multiple curves to be supported. The implementation SHALL provide the curve support behavior specified in 3.1, Curve Management.

Group/Point Name	Label	Data Type	RW Access (RW)	Mandatory (M)	Static (S)
DERVoltWatt	DER Volt-Watt	group			
ID	Model ID	uint16		M	S
L	Model Length	uint16		M	S
Ena	Module Enable	enum16	RW	M	
AdptCrvReq	Adopt Curve Request	uint16	RW	M	
AdptCrvRslt	Adopt Curve Result	enum16		M	
NPt	Number of Points	uint16		M	S
NCrv	Stored Curve Count	uint16		M	S
RvrtTms	Reversion Timeout	uint32	RW		
RvrtRem	Reversion Time Remaining	uint32			
RvrtCrv	Reversion Curve	uint16	RW		
V_SF	Voltage Scale Factor	sunssf		M	S
DeptRef_SF	Watt Scale Factor	sunssf		M	S
RspTms_SF	Open-Loop Scale Factor	sunssf		M	S
DERVoltWatt.Crv	Stored Curves	group			
ActPt	Active Points	uint16	RW	M	
DeptRef	Dependent Reference	enum16	RW	M	
RspTms	Open Loop Response Time	uint32	RW		
ReadOnly	Curve Access	enum16		M	S
DERVoltWatt.Crv.Pt	Stored Curve Points	group		1	
V	Voltage Point	uint16	RW		
W	Dependent Reference	int16	RW		

Table 9: DER Volt-Watt Points

DERVoltWatt Points

DERVoltWatt DER Volt-Watt model.

DER Volt-Watt model ID.

L DER Volt-Watt model length.

Ena Volt-Watt control enable:

DISABLED (0) = Disabled ENABLED (1) = Enabled

AdptCrvReq Index of curve points to adopt. The first curve index is 1.

AdptCrvRslt Result of last adopt curve operation:

IN_PROGRESS (0) = Update in Progress
COMPLETED (1) = Update Complete

FAILED (2) = Update Failed

NPt Number of curve points supported.

NCrv Number of stored curves supported.

RvrtTms Units: Secs

Reversion time in seconds. 0 = No reversion time.

RvrtRem Units: Secs

Reversion time remaining in seconds.

RvrtCrv Default curve after reversion timeout.

V_SF Scale factor for curve voltage points.

DeptRef_SF Scale factor for curve watt points.

RspTms_SF Open loop response time scale factor.

DERVoltWatt.Crv Stored Curves

ActPt Number of active points.

DeptRef Curve dependent reference:

 $W_MAX_PCT(0) = Percent of maximum active power W_AVAL_PCT(1) = Percent of available active power$

RspTms Scale Factor: RspTms SF

Units: Secs

Open loop response time.

ReadOnly Curve read-write access:

RW (0) = Read-Write Access R (1) = Read-Only Access

DERVoltWatt.Crv.Pt Stored Curve Points

V Scale Factor: V SF

Units: VNomPct

Curve voltage point as percentage.

W Scale Factor: DeptRef SF

Units: DeptRef

Active power in percent of rated active power.

4.7 DER Trip Low Voltage (707)

The DER Trip Low Voltage information model provides the trip and momentary cessation settings for low voltage conditions. The implementation SHALL provide the trip/momentary cessation support behavior specified in 3.1, Curve Management.

The information model organizes the curves as sets of three curves with each set containing a curve for must trip, may trip, and momentary cessation. Multiple curve sets can be supported in the model.

Group/Point Name	Label	Data Type	RW Access (RW)	Mandatory (M)	Static (S)
DERTripLV	DER Trip LV	group			
ID	DER Trip LV Model ID	uint16		M	S
L	DER Trip LV Model Length	uint16		M	S
Ena	DER Trip LV Module Enable	enum16	RW	M	
AdptCrvReq	Adopt Curve Request	uint16	RW	M	
AdptCrvRslt	Adopt Curve Result	enum16		M	
NPt	Number of Points	uint16		M	S
NCrvSet	Stored Curve Set Count	uint16		M	S
V_SF	Voltage Scale Factor	sunssf		M	S
Tms_SF	Time Point Scale Factor	sunssf		M	S
DERTripLV.Crv	Stored Curves	group			
ReadOnly	Curve Access	enum16		M	S
DERTripLV.Crv.MustTrip	Must Trip Curve	group			
ActPt	Number of Active Points	uint16	RW		
DERTripLV.Crv.MustTrip.Pt	Must Trip Curve Points	group			
V	Voltage Point	uint16	RW		
Tms	Time Point	uint32	RW		
DERTripLV.Crv.MayTrip	May Trip Curve	group			
ActPt	Number of Active Points	uint16	RW		
DERTripLV.Crv.MayTrip.Pt	May Trip Curve Points	group			
V	Voltage Point	uint16	RW		
Tms	Time Point	uint32	RW		
DERTripLV.Crv.MomCess	Momentary Cessation Curve	group			
ActPt	Number of Active Points	uint16	RW		
DERTripLV.Crv.MomCess.Pt	Momentary Cessation Curve Points	group			
V	Voltage Point	uint16	RW		
Tms	Time Point	uint32	RW		

Table 10: DER Trip LV Points

DERTripLV Points

DERTripLV DER low voltage trip model.

DER low voltage trip model ID.

L DER low voltage trip model length.

Ena DER low voltage trip control enable:

DISABLED (0) = Disabled ENABLED (1) = Enabled

AdptCrvReq Index of curve points to adopt. The first curve index is 1.

AdptCrvRslt Result of last adopt curve operation:

IN_PROGRESS (0) = Update in Progress
COMPLETED (1) = Update Complete

FAILED (2) = Update Failed

NPt Number of curve points supported.

NCrvSet Number of stored curve sets supported.

V_SF Scale factor for curve voltage points.

Tms_SF Scale factor for curve time points.

DERTripLV. Crv Stored curve sets.

ReadOnly Curve read-write access:

RW (0) = Read-Write Access R (1) = Read-Only Access

DERTripLV. Crv. MustTrip Stored must trip curve.

ActPt Number of active points in must trip curve.

DERTripLV. Crv. MustTrip. Pt Must trip curve points.

V Scale Factor: V_SF

Units: VNomPct

Curve voltage point as percentage of VRef.

Tms Scale Factor: Tms SF

Units: Secs

Curve time point in seconds.

DERTripLV. Crv. MayTrip Stored may trip curve.

ActPt Number of active points in the may trip curve.

DERTripLV.Crv.MayTrip.Pt May trip curve points.

V Scale Factor: V SF

Units: VNomPct

Curve voltage point as percentage of VRef.

Tms Scale Factor: Tms SF

Units: Secs

Curve time point in seconds.

DERTripLV. Crv. MomCess Stored momentary cessation curve.

ActPt Number of active points in the momentary cessation curve.

DERTripLV. Crv. MomCess. Pt Momentary cessation curve points.

V Scale Factor: V SF

Units: VNomPct

Curve voltage point as percentage of VRef.

Tms Scale Factor: Tms SF

Units: Secs

Curve time point in seconds.

4.8 DER Trip High Voltage (708)

The DER Trip High Voltage information model provides the trip and momentary cessation settings for high voltage conditions. The implementation SHALL provide the trip/momentary cessation support behavior specified in 3.4, Trip/Momentary Cessation Settings.

The information model organizes the curves as sets of three curves with each set containing a curve for must trip, may trip, and momentary cessation. Multiple curve sets can be supported in the model.

Group/Point Name	Label	Data Type	RW Access (RW)	Mandatory (M)	Static (S)
DERTripHV	DER Trip HV	group			
ID	DER Trip HV Model ID	uint16		M	S
L	DER Trip HV Model Length	uint16		M	S
Ena	DER Trip HV Module Enable	enum16	RW	M	
AdptCrvReq	Adopt Curve Request	uint16	RW	M	
AdptCrvRslt	Adopt Curve Result	enum16		M	
NPt	Number of Points	uint16		M	S
NCrvSet	Stored Curve Set Count	uint16		M	S
V_SF	Voltage Scale Factor	sunssf		M	S
Tms_SF	Time Point Scale Factor	sunssf		M	S
DERTripHV.Crv	Stored Curves	group			
ReadOnly	Curve Access	enum16		M	S
DERTripHV.Crv.MustTrip	Must Trip Curve	group		,	•
ActPt	Number of Active Points	uint16	RW		
DERTripHV.Crv.MustTrip.Pt	Must Trip Curve Points	group			
V	Voltage Point	uint16	RW		
Tms	Time Point	uint32	RW		
DERTripHV.Crv.MayTrip	May Trip Curve	group			
ActPt	Number of Active Points	uint16	RW		
DERTripHV.Crv.MayTrip.Pt	May Trip Curve Points	group			
V	Voltage Point	uint16	RW		
Tms	Time Point	uint32	RW		
DERTripHV.Crv.MomCess	Momentary Cessation Curve	group			
ActPt	Number of Active Points	uint16	RW		
DERTripHV.Crv.MomCess.Pt	Momentary Cessation Curve Points	group			
V	Voltage Point	uint16	RW		
Tms	Time Point	uint32	RW		

Table 11: DER Trip HV Points

DERTripHV Points

DERTripHV DER high voltage trip model.

DER high voltage trip model ID.

L DER high voltage trip model length.

Ena DER high voltage trip control enable:

DISABLED (0) = Disabled ENABLED (1) = Enabled

AdptCrvReq Index of curve points to adopt. The first curve index is 1.

AdptCrvRslt Result of last adopt curve operation:

IN_PROGRESS (0) = Update in Progress
COMPLETED (1) = Update Complete

FAILED (2) = Update Failed

NPt Number of curve points supported.

NCrvSet Number of stored curve sets supported.

V SF Scale factor for curve voltage points.

Tms_SF Scale factor for curve time points.

DERTripHV. Crv Stored curve sets.

ReadOnly Curve read-write access:

RW (0) = Read-Write Access R (1) = Read-Only Access

DERTripHV.Crv.MustTrip Stored must trip curve.

ActPt Number of active points in must trip curve.

DERTripHV.Crv.MustTrip.Pt Must trip curve points.

V Scale Factor: V_SF

Units: VNomPct

Curve voltage point as percentage.

Tms Scale Factor: Tms SF

Units: Secs

Curve time point in seconds.

DERTripHV. Crv. MayTrip Stored may trip curve.

ActPt Number of active points in the may trip curve.

DERTripHV.Crv.MayTrip.Pt May trip curve points.

V Scale Factor: V SF

Units: VNomPct

Curve voltage point as percentage.

Tms Scale Factor: Tms SF

Units: Secs

Curve time point in seconds.

DERTripHV. Crv. MomCess Stored momentary cessation curve.

ActPt Number of active points in the momentary cessation curve.

DERTripHV.Crv.MomCess.Pt Momentary cessation curve points

V Scale Factor: V_SF

Units: VNomPct

Curve voltage point as percentage.

Tms Scale Factor: Tms SF

Units: Secs

Curve time point in seconds.

4.9 DER Trip Low Frequency (709)

The DER Trip Low Frequency information model provides the trip and momentary cessation settings for low frequency conditions. The implementation SHALL provide the trip/momentary cessation support behavior specified in 3.4, Trip/Momentary Cessation Settings.

The information model organizes the curves as sets of three curves with each set containing a curve for must trip, may trip, and momentary cessation. Multiple curve sets can be supported in the model.

Group/Point Name	Label	Data Type	RW Access (RW)	Mandatory (M)	Static (S)
DERTripLF	DER Trip LF	group			ı
ID	DER Trip LF Model ID	uint16		M	S
L	DER Trip LF Model Length	uint16		M	S
Ena	DER Trip LF Module Enable	enum16	RW	M	
AdptCrvReq	Adopt Curve Request	uint16	RW	M	
AdptCrvRslt	Adopt Curve Result	enum16		M	
NPt	Number of Points	uint16		M	S
NCrvSet	Stored Curve Set Count	uint16		M	S
Hz_SF	Frequency Scale Factor	sunssf		M	S
Tms_SF	Time Point Scale Factor	sunssf		M	S
DERTripLF.Crv	Stored Curves	group			
ReadOnly	Curve Access	enum16		M	S
DERTripLF.Crv.MustTrip	Must Trip Curve	group			
ActPt	Number of Active Points	uint16	RW		
DERTripLF.Crv.MustTrip.Pt	Must Trip Curve Points	group			
Hz	Frequency Point	uint32	RW		
Tms	Time Point	uint32	RW		
DERTripLF.Crv.MayTrip	May Trip Curve	group			
ActPt	Number of Active Points	uint16	RW		
DERTripLF.Crv.MayTrip.Pt	May Trip Curve Points	group			
Hz	Frequency Point	uint32	RW		
Tms	Time Point	uint32	RW		
DERTripLF.Crv.MomCess	Momentary Cessation Curve	group			
ActPt	Number of Active Points	uint16	RW		
DERTripLF.Crv.MomCess.Pt	Momentary Cessation Curve Points	group			
Hz	Frequency Point	uint32	RW		
Tms	Time Point	uint32	RW		

Table 12: DER Trip LF Points

DERTripLF Points

DERTripLF DER low frequency trip model.

DER low frequency trip model ID.

DER low frequency trip model length.

Ena DER low frequency trip control enable:

DISABLED (0) = Disabled ENABLED (1) = Enabled

AdptCrvReq Index of curve points to adopt. The first curve index is 1.

AdptCrvRslt Result of last adopt curve operation:

IN_PROGRESS (0) = Update In Progress
COMPLETED (1) = Update Complete

FAILED (2) = Update Failed

NPt Number of curve points supported.

NCrvSet Number of stored curve sets supported.

Hz_SF Scale factor for curve frequency points.

Tms_SF Scale factor for curve time points.

DERTripLF.Crv Stored curve sets.

ReadOnly Curve read-write access:

RW (0) = Read-Write Access R (1) = Read-Only Access

DERTripLF. Crv. MustTrip Stored must trip curve.

ActPt Number of active points in must trip curve.

DERTripLF.Crv.MustTrip.Pt Must trip curve points.

Hz Scale Factor: Hz SF

Units: Hz

Curve frequency point.

Tms Scale Factor: Tms SF

Units: Secs

Curve time point in seconds.

DERTripLF. Crv. MayTrip Stored may trip curve.

ActPt Number of active points in the may trip curve.

DERTripLF.Crv.MayTrip.Pt May trip curve points.

Hz Scale Factor: Hz SF

Units: Hz

Curve frequency point.

Tms Scale Factor: Tms SF

Units: Secs

Curve time point in seconds.

DERTripLF. Crv. MomCess Stored momentary cessation curve.

ActPt Number of active points in the momentary cessation curve.

DERTripLF.Crv.MomCess.Pt Momentary cessation curve points.

Hz Scale Factor: Hz SF

Units: Hz

Curve frequency point.

Tms Scale Factor: Tms SF

Units: Secs

Curve time point in seconds.

4.10 DER Trip High Frequency (710)

The DER Trip High Frequency information model provides the trip and momentary cessation settings for high frequency conditions. The implementation SHALL provide the trip/momentary cessation support behavior specified in section 3.4, Trip/Momentary Cessation Settings.

The information model organizes the curves as sets of three curves with each set containing a curve for must trip, may trip, and momentary cessation. Multiple curve sets can be supported in the model.

Group/Point Name	Label	Data Type	RW Access (RW)	Mandatory (M)	Static (S)
DERTripHF	DER Trip HF	group		1	
ID	DER Trip HF Model ID	uint16		M	S
L	DER Trip HF Model Length	uint16		M	S
Ena	DER Trip HF Module Enable	enum16	RW	M	
AdptCrvReq	Adopt Curve Request	uint16	RW	M	
AdptCrvRslt	Adopt Curve Result	enum16		M	
NPt	Number of Points	uint16		M	S
NCrvSet	Stored Curve Set Count	uint16		M	S
Hz_SF	Frequency Scale Factor	sunssf		M	S
Tms_SF	Time Point Scale Factor	sunssf		M	S
DERTripHF.Crv	Stored Curves	group			
ReadOnly	Curve Access	enum16		M	S
DERTripHF.Crv.MustTrip	Must Trip Curve	group			
ActPt	Number of Active Points	uint16	RW		
DERTripHF.Crv.MustTrip.Pt	Must Trip Curve Points	group			
Hz	Frequency Point	uint32	RW		
Tms	Time Point	uint32	RW		
DERTripHF.Crv.MayTrip	May Trip Curve	group			
ActPt	Number of Active Points	uint16	RW		
DERTripHF.Crv.MayTrip.Pt	May Trip Curve Points	group			
Hz	Frequency Point	uint32	RW		
Tms	Time Point	uint32	RW		
DERTripHF.Crv.MomCess	Momentary Cessation Curve	group			
ActPt	Number of Active Points	uint16	RW		
DERTripHF.Crv.MomCess.Pt	Momentary Cessation Curve Points	group			
Hz	Frequency Point	uint32	RW		
Tms	Time Point	uint32	RW		

Table 13: DER Trip HF Points

DERTripHF Points

DERTripHF DER high frequency trip model.

DER high frequency trip model ID.

L DER high frequency trip model length.

Ena DER high frequency trip control enable:

DISABLED (0) = Disabled ENABLED (1) = Enabled

AdptCrvReq Index of curve points to adopt. The first curve index is 1.

AdptCrvRslt Result of last adopt curve operation:

IN_PROGRESS (0) = Update In Progress
COMPLETED (1) = Update Complete

FAILED (2) = Update Failed

NPt Number of curve points supported.

NCrvSet Number of stored curve sets supported.

Hz_SF Scale factor for curve frequency points.

Tms SF Scale factor for curve time points.

DERTripHF.Crv Stored curve sets.

ReadOnly Curve read-write access:

RW (0) = Read-Write Access R (1) = Read-Only Access

DERTripHF.Crv.MustTrip Stored must trip curve.

ActPt Number of active points in must trip curve.

DERTripHF.Crv.MustTrip.Pt Must trip curve points.

Hz Scale Factor: Hz SF

Units: Hz

Curve frequency point.

Tms Scale Factor: Tms SF

Units: Secs

Curve time point in seconds.

DERTripHF. Crv. MayTrip Stored may trip curve.

ActPt Number of active points in may trip curve.

DERTripHF.Crv.MayTrip.Pt May trip curve points.

Hz Scale Factor: Hz SF

Units: Hz

Curve frequency point.

Tms Scale Factor: Tms_SF

Units: Secs

Curve time point in seconds.

DERTripHF. Crv. MomCess Stored momentary cessation curve.

ActPt Number of active points in the momentary cessation curve.

DERTripHF.Crv.MomCess.Pt Momentary cessation curve points.

Hz Scale Factor: Hz SF

Units: Hz

Curve frequency point.

Tms Scale Factor: Tms SF

Units: Secs

Curve time point in seconds.

4.11 DER Frequency Droop (711)

The DER Frequency Droop information model supports frequency-watt settings as specified in IEEE 1547-2018. The terminology used in this information model corresponds directly to the IEEE 1547-2018 standard.

Group/Point Name	Label	Data Type	RW Access (RW)	Mandatory (M)	Static (S)
DERFreqDroop	DER Frequency Droop	group			
ID	DER Frequency Droop ID	uint16		M	S
L	DER Frequency Droop Model Length	uint16		M	S
Ena	DER Frequency Droop Module Enable	enum16	RW	M	
AdptCtlReq	Adopt Control Request	uint16	RW	M	
AdptCtlRslt	Adopt Control Result	enum16		M	
NCtl	Stored Control Count	uint16		M	S
RvrtTms	Reversion Timeout	uint32	RW		
RvrtRem	Reversion Time Left	uint32			
RvrtCtl	Reversion Control	uint16	RW		
Db_SF	Deadband Scale Factor	sunssf		M	S
K_SF	Frequency Change Scale Factor	sunssf		M	S
RspTms_SF	Open-Loop Scale Factor	sunssf		M	S
DERFreqDroop.Ctl	Stored Curves	group			
DbOf	Over-Frequency Deadband	uint32	RW	M	
DbUf	Under-Frequency Deadband	uint32	RW	M	
KOf	Over- Frequency Change Ratio	uint16	RW	M	
KUf	Under Frequency Change Ratio	uint16	RW	M	
RspTms	Open-Loop Response Time	uint32	RW	M	
PMin	Minimum Active Power	int16	RW		
ReadOnly	Control Access	enum16		M	S

Table 14: DER Frequency Droop Points

DERFreqDroop Points

DERFreqDroop DER Frequency Droop model.

DER Frequency Droop model ID.

L DER Frequency Droop model length.

Ena DER Frequency-Watt (Frequency-Droop) control enable:

DISABLED (0) = Disabled ENABLED (1) = Enabled

AdptCtlReq Set active control: The first control index is 1.

AdptCtlRslt Result of last set active control operation:

IN_PROGRESS (0) = Update In Progress
COMPLETED (1) = Update Complete

FAILED (2) = Update Failed

NCtl Number of stored controls supported.

RvrtTms Units: Secs

Reversion time in seconds. 0 = No reversion time.

RvrtRem Units: Secs

Reversion time remaining in seconds.

RvrtCtl Default control after reversion timeout.

Db_SF Deadband scale factor.

K_SF Frequency change scale factor.

RspTms_SF Open loop response time scale factor.

DERFreqDroop.Ctl Stored curve sets.

DbOf Scale Factor: Db SF

Units: Hz

The deadband value for over-frequency conditions in Hz.

DbUf Scale Factor: Db SF

Units: Hz

The deadband value for under-frequency conditions in Hz.

KOf Scale Factor: K SF

Frequency droop per-unit frequency change for over-frequency conditions corresponding to 1 per-unit power output change.

KUf Scale Factor: K SF

Frequency droop per-unit frequency change for under-frequency conditions corresponding to 1 per-unit power output change.

RspTms Scale Factor: RspTms SF

Units: Secs

The open-loop response time in seconds.

PMin Units: Pct

Minimum active power.

ReadOnly Control read-write access:

RW (0) = Read-Write Access R (1) = Read-Only Access

4.12 DER Watt-Var (712)

The DER Watt-Var information model supports the setting of watt-var controls as piece-wise linear curves. The model allows multiple curves to be supported. The implementation SHALL provide the curve support behavior specified in 3.1, Curve Management.

Group/Point Name	Label	Data Type	RW Access (RW)	Mandatory (M)	Static (S)
DERWattVar	DER Watt-Var	group			,
ID	DER Watt-Var Model ID	uint16		M	S
L	DER Watt-Var Model Length	uint16		M	S
Ena	DER Watt-Var Module Enable	enum16	RW	M	
AdptCrvReq	Set Active Curve Request	uint16	RW	M	S
AdptCrvRslt	Set Active Curve Result	enum16		M	S
NPt	Number of Points	uint16		M	S
NCrv	Stored Curve Count	uint16		M	S
RvrtTms	Reversion Timeout	uint32	RW		
RvrtRem	Reversion Time Left	uint32			
RvrtCrv	Reversion Curve	uint16	RW		
W_SF	Active Power Scale Factor	sunssf		M	S
DeptRef_SF	Var Scale Factor	sunssf		M	S
DERWattVar.Crv	Stored Curves	group			,
ActPt	Active Points	uint16	RW	M	
DeptRef	Dependent Reference	enum16	RW	M	
Pri	Power Priority	enum16	RW		
ReadOnly	Curve Access	enum16		M	S
DERWattVar.Crv.Pt	Stored Curve Points	group		1	1
W	Active Power Point	int16	RW		
Var	Reactive Power Point	int16	RW		

Table 15: DER Watt-Var Points

DERWattVar Points

DERWattVar	DER Watt-Var model.

DER Watt-Var model ID.

L DER Watt-Var model length.

Ena DER Watt-Var control enable:

> DISABLED (0) = Disabled ENABLED (1) = Enabled

AdptCrvReq Set active curve. The first curve index is 1.

AdptCrvRslt Result of last set active curve operation:

> IN PROGRESS (0) = Update In Progress COMPLETED (1) = Update Complete

FAILED (2) = Update Failed

NPt Number of curve points supported.

NCrv Number of stored curves supported.

RvrtTms Units: Secs

Reversion time in seconds. No reversion time = 0.

RvrtRem Units: Secs

Reversion time remaining in seconds

RvrtCrv Default curve after reversion timeout.

V SF Scale factor for curve voltage points.

DeptRef SF Scale factor for curve var points.

DERWattVar.Crv Stored curve sets.

ActPt Number of active points.

DeptRef Curve dependent reference:

> W MAX PCT (0) = Percent Max Watts VAR MAX PCT (1) = Percent Max Vars VAR AVAL PCT (2) = Percent Available Vars

> VA MAX PCT (3) = Percent Max Apparent Power

Pri Power priority:

> ACTIVE (0) = Active power priority REACTIVE (1) = Reactive power priority

ReadOnly Curve read-write access:

RW(0) = Read-Write AccessR(1) = Read-Only Access

DERWattVar.Crv.Pt Stored curve points.

 ${\tt W}$ Scale Factor: ${\tt W_SF}$

Units: WMaxPct

Curve active power point as percentage.

Var Scale Factor: DeptRef SF

Units: VarPct

Curve reactive power point as set in DeptRef point.

4.13 DER Storage Capacity (713)

The DER Storage Capacity information model supports high-level storage capacity settings and status information.

Group/Point Name	Label	Data Type	RW Access (RW)	Mandatory (M)	Static (S)
DERStorageCapacity	DER Storage Capacity	group			
ID	DER Storage Capacity ID	uint16		M	S
L	DER Storage Capacity Length	uint16		M	S
WHRtg	Energy Rating	uint16			
WHAvail	Energy Available	uint16			
SoC	State of Charge	uint16			
SoH	State of Health	uint16			
Sta	Storage Status	enum16			
WH_SF	Energy Scale Factor	sunssf			S
Pct_SF	Percent Scale Factor	sunssf		_	S

Table 16: DER Storage Capacity Points

DERStorageCapacity Points

DERStorageCapacity DER Storage Capacity model.

DER Storage Capacity model ID.

L DER Storage Capacity model length.

WHRtg Scale Factor: WH SF

Units: WH

Energy rating of the DER storage.

WHAvail Scale Factor: WH SF

Units: WH

Energy available of the DER storage (WHAvail = WHRtg * SoC *

SoH).

SoC Scale Factor: Pct SF

Units: Pct

State of charge of the DER storage.

SoH Scale Factor: Pct SF

Units: Pct

State of health of the DER storage.

Sta Storage status:

OK(0) = No Error

WARNING (1) = Warning ERROR (2) = Error

WH_SF Energy scale factor.

Pct_SF Percent scale factor.

4.14 DER DC Measurement (714)

The DER DC Measurement information model contains the DC measurement data associated with the DER along with current status and alarm information. Neither the status nor the alarm information points are latched. They both reflect the current state of the DER and change when that status or alarm state changes.

The information model supports multiple DC ports.

Group/Point Name	Label	Data Type	RW Access (RW)	Mandatory (M)	Static (S)
DERMeasureDC	DER DC Measurement	group			I.
ID	DER DC Measure Model ID	uint16		M	S
L	DER DC Measure Model Length	uint16		M	S
PrtAlrms	Port Alarms	bitfield32			
NPrt	Number of Ports	uint16			S
DCA	DC Current	int16			
DCW	DC Power	int16			
DCWhInj	DC Energy Injected	uint64			
DCWhAbs	DC Energy Absorbed	uint64			
DCA_SF	DC Current Scale Factor	sunssf			S
DCV_SF	DC Voltage Scale Factor	sunssf			S
DCW_SF	DC Power Scale Factor	sunssf			S
DCWH_SF	DC Energy Scale Factor	sunssf			S
Tmp_SF	Temperature Scale Factor	sunssf			S
DERMeasureDC.Prt		group			l.
PrtTyp	Port Type	enum16			
ID	Port ID	uint16			
IDStr	Port ID String	string			
DCA	DC Current	int16			
DCV	DC Voltage	uint16			
DCW	DC Power	int16			
DCWhInj	DC Energy Injected	uint64			
DCWhAbs	DC Energy Absorbed	uint64			
Tmp	DC Port Temperature	int16			
DCSta	DC Port Status	enum16			
DCAlrm	DC Port Alarm	bitfield32			

Table 17: DER AC Measurement Points

DERMeasureDC

DERMeasureDC DER DC measurement model.

DER DC measurement model ID.

L DER DC measurement model length.

PrtAlrms Bitfield of ports with active alarms:

Active alarm bit value = 1. No alarm bit value = 0.

Bit 0 is first port.

NPrt Number of DC ports.

DCA Scale Factor: DCA SF

Units: A

Total DC current for all ports.

DCW Scale Factor: DCW SF

Units: W

Total DC power for all ports.

DCWhInj Scale Factor: DCWH SF

Units: Wh

Total cumulative DC energy injected for all ports.

DCWhAbs Scale Factor: DCWH_SF

Units: Wh

Total cumulative DC energy absorbed for all ports.

DCA SF DC current scale factor.

DCV_SF DC voltage scale factor.

DCW_SF DC power scale factor.

DCWH_SF DC energy scale factor.

Tmp_SF Temperature scale factor.

DERMeasureDC.Prt Port group.

PrtTyp Port type:

PV(0) = Photovoltaic

ESS(1) = Energy Storage System

EV (2) = Electric Vehicle
INJ (3) = Generic Injecting
ABS (4) = Generic Absorbing
BIDIR (5) = Generic Bidirectional

DC DC (6) = DC to DC

ID Port ID.

IDStr Port ID string.

DCA Scale Factor: DCA SF

Units: A

DC current for the port.

DCV Scale Factor: DCV SF

Units: V

DC voltage for the port.

DCW Scale Factor: DCW_SF

Units: W

DC power for the port.

DCWhInj Scale Factor: DCWH_SF

Units: Wh

Total cumulative DC energy injected for the port.

DCWhAbs Scale Factor: DCWH_SF

Units: Wh

Total cumulative DC energy absorbed for the port.

Tmp

Scale Factor: Tmp_SF

Units: C

DC port temperature.

DCSta

DC port status:

OFF (0) = OffON (1) = On

WARNING (2) = Warning

ERROR (3) = Error

DCAlrm

DC port alarm:

GROUND FAULT (0) = Ground Fault

INPUT OVER VOLTAGE (1) = Input Over Voltage

DC_DISCONNECT (3) = DC Disconnect

CABINET_OPEN (5) = Cabinet Open

MANUAL SHUTDOWN (6) = Manual Shutdown

OVER_TEMP (7) = Over Temperature

BLOWN FUSE (12) = Blown Fuse

UNDER TEMP (13) = Under Temperature

MEMORY LOSS (14) = Memory Loss

ARC DETECTION (15) = Arc Detection

RESERVED (19) = Reserved

TEST FAILED (20) = Test Failed

INPUT UNDER VOLTAGE (21) = Under Voltage

INPUT_OVER_CURRENT (22) = Over Current