
SunSpec Device Information Model Specification 1 sunspec.org

Status: Approved

Version: 1.2

SunSpec Device Information Model
Specification

SunSpec Specification

Abstract

This document specifies the definition and usage of SunSpec Device Information Models.

SunSpec Device Information Model Specification 2 sunspec.org

Copyright © SunSpec Alliance 2024. All Rights Reserved.

All other copyrights and trademarks are the property of their respective owners.

License Agreement and Copyright Notice
This document and the information contained herein is provided on an "AS IS" basis and the
SunSpec Alliance DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL
NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

This document may be used, copied, and furnished to others, without restrictions of any kind,
provided that this document itself may not be modified in any way, except as needed by the
SunSpec Technical Committee and as governed by the SunSpec IPR Policy. The complete
policy of the SunSpec Alliance can be found at sunspec.org.

Prepared by the SunSpec Alliance

Website: sunspec.org

Email: info@sunspec.org

mailto:info@sunspec.org

SunSpec Device Information Model Specification 3 sunspec.org

Revision History

Version Date Comments

1.0 4-20-2021 Initial release

1.1 5-9-2022
Added clarification for read/write timing
requirements in section 6.5.

1.2 7-8-2024
Added new fields to the models – detailed
description and standards.
Mandated the use of function code 6 for single
register write (section 6.3).
Mandated the support for Broadcast in RTU
devices (section 6.3).

Set the read/write timing to have a maximum
delay of 1000 ms (Section 6.5)

SunSpec Device Information Model Specification 4 sunspec.org

About the SunSpec Alliance
The SunSpec Alliance is a trade alliance of developers, manufacturers, operators, and service
providers together pursuing open information standards for the distributed energy industry.
SunSpec standards address most operational aspects of PV, storage, and other distributed
energy power plants on the smart grid, including residential, commercial, and utility-scale
systems, thus reducing cost, promoting innovation, and accelerating industry growth.

Over 160 organizations are members of the SunSpec Alliance, including global leaders from
Asia, Europe, and North America. Membership is open to corporations, non-profits, and
individuals. For more information about the SunSpec Alliance, or to download SunSpec
specifications at no charge, visit https://sunspec.org/.

About the SunSpec Specification Process
SunSpec Alliance specifications are initiated by SunSpec members to establish an industry
standard for mutual benefit. Any SunSpec member can propose a technical work item. Given
sufficient interest and time to participate, and barring significant objections, a work group is
formed, and its charter is approved by the board of directors. The workgroup meets regularly to
advance the agenda of the team.

The output of the workgroup is generally in the form of a SunSpec Interoperability Specification.
These documents are considered to be normative, meaning that there is a matter of
conformance required to support interoperability. The revision and associated process of
managing these documents is tightly controlled. Other documents are informative, or make
some recommendations with regard to best practices, but are not a matter of conformance.
Informative documents can be revised more freely and more frequently to improve the quality
and quantity of information provided.

SunSpec Interoperability Specifications follow a lifecycle pattern of: DRAFT, TEST,
APPROVED, and SUPERSEDED.

For more information or to download a SunSpec Alliance specification, go to
https://sunspec.org/specifications/.

SunSpec Device Information Model Specification 5 sunspec.org

Table of Contents
1 Introduction .. 9

1.1 Document Organization .. 9

1.2 Terminology .. 10

2 Normative References .. 13

3 Overview ... 14

3.1 Device Information Model Structure ... 14

3.1.1 Model .. 15

3.1.2 Point ... 15

3.1.3 Point Group ... 15

3.1.4 Symbol .. 15

3.1.5 Comment .. 15

3.2 Device Information Model Definition and Instance Relationship .. 15

3.3 Device Information Model Usage ... 16

3.3.1 Modbus ... 18

3.3.2 JSON ... 18

4 Device Information Model Definition .. 19

4.1 Definition Elements .. 19

4.1.1 Model Element ... 19

4.1.2 Point Group Element .. 20

4.1.3 Point Element .. 20

4.1.4 Symbol Element ... 20

4.1.5 Comment Element ... 20

4.2 Element Attributes ... 21

4.2.1 ID ... 22

4.2.2 Points .. 22

4.2.3 Groups .. 22

4.2.4 Type ... 22

4.2.5 Value .. 22

4.2.6 Count .. 24

4.2.7 Size ... 24

4.2.8 Scale Factor ... 24

4.2.9 Units ... 24

4.2.10 Access ... 24

4.2.11 Mandatory ... 24

SunSpec Device Information Model Specification 6 sunspec.org

4.2.12 Label ... 24

4.2.13 Description .. 25

4.2.14 Symbols .. 25

4.2.15 Detailed Description ... 25

4.2.15 Standards.. 25

5 Device Information Model Definition Encoding .. 26

5.1 JSON Message Encoding ... 26

5.1.1 Element Types ... 26

5.1.2 Element Attribute Types ... 26

5.1.3 Model Encoding ... 27

5.1.4 Point Group Encoding ... 28

5.1.5 Point Encoding ... 28

5.1.6 Symbol Encoding ... 29

5.1.7 Comment Encoding .. 29

5.2 CSV Encoding .. 29

5.2.1 Columns .. 29

5.2.2 Rows ... 31

6 Device Information Model Usage for Modbus .. 32

6.1 Device Modbus Map ... 32

6.1.1 Modbus Address Location ... 32

6.1.2 Information Models .. 32

6.1.3 End Model ... 33

6.2 Device Information Model Discovery .. 33

6.3 Modbus Functions .. 33

6.4 Value Representation.. 34

6.4.1 16-bit Integer Values .. 34

6.4.2 32-bit Integer Values .. 34

6.4.3 64-bit Integer Values .. 35

6.4.4 128-bit Integer Values .. 35

6.4.5 String Values ... 35

6.4.6 32-bit Floating-point Values .. 36

6.4.7 64-bit Floating-point Values .. 36

6.4.8 sunssf ... 37

6.5 Verifying Written Values ... 37

6.6 Modbus Error Handling ... 37

6.6.1 Unimplemented Registers ... 38

SunSpec Device Information Model Specification 7 sunspec.org

6.6.2 Writing Invalid Value .. 38

6.6.3 Writing a Read-Only Register .. 38

6.7 Security ... 38

7 Device Information Model Usage for JSON ... 39

Appendix A: Model Definition Examples ... 41

Appendix B: Model Instance Examples .. 46

SunSpec Device Information Model Specification 8 sunspec.org

Index of Tables
Table 1: Model Definition Elements .. 19

Table 2: Element Attributes ... 21

Table 3: Point Element Type Attribute Values ... 23

Table 4: Point Group Element Type Attribute Values ... 23

Table 5: Definition Element JSON Encoding .. 26

Table 6: JSON-encoded Element Attribute Types ... 27

Table 7: Spreadsheet Column Encoding... 30

Table 8: Modbus 16-bit Integer Value Register .. 34

Table 9: Modbus 32-bit Integer Value Registers ... 34

Table 10: Modbus 64-bit Integer Value High Registers ... 35

Table 11: Modbus 64-bit Integer Value Low Registers .. 35

Table 12: Modbus 128-bit Integer Value Registers .. 35

Table 13: Modbus String Value Registers .. 35

Table 14: Modbus 32-bit Floating-point Value High Register .. 36

Table 15: Modbus 32-bit Floating-point Value Low Register ... 36

Table 16: Modbus 64-bit Floating-point Register 1 ... 36

Table 17: Modbus 64-bit Floating-point Register 2 ... 36

Table 18: Modbus 64-bit Floating-point Register 3 ... 37

Table 19: Modbus 64-bit Floating-point Value Register 4 .. 37

Table 20: Modbus sunssf Value Registers .. 37

Table 21: Point Type Mapping to JSON Type .. 40

Table of Figures
Figure 1: Device Information Model Communication and Implementation ... 9

Figure 2: Device Information Model Elements .. 14

Figure 3: Device Information Model Definition-Instance Map ... 16

Figure 4: Device Information Model Instance ... 17

Figure 5: Device Modbus Map ... 32

SunSpec Device Information Model Specification 9 sunspec.org

1 Introduction
SunSpec Device Information Models provide a simple, standardized mechanism for specifying
data sets supported by a device.

Device Information Models are used to structure device data for exchange across
communications interfaces. The following figure shows the communication scenario and the
responsibility of the SunSpec device to implement Device Information Models.

Figure 1: Device Information Model Communication and Implementation

This specification standardizes Device Information Model definition and specifies usage for two
information representations:

• Modbus

• JSON encoded messages

1.1 Document Organization

Chapter 2 lists the standards documents that are normative references for this document.

Chapter 3 introduces Device Information Model concepts and structure used to define,
implement, and use the model.

Chapter 4 provides a formal Device Information Model specification.

Chapter 5 specifies JSON and CSV model definition encoding.

Chapter 6 describes Device Information Model usage for the Modbus messaging structure.

Chapter 7 describes Device Information Model usage for JSON message encoding.

SunSpec Device Information Model Specification 10 sunspec.org

1.2 Terminology

Attribute An attribute describes a definition element or provides
additional information about the element. For
example, an access attribute is a point element
attribute that indicates if a point value is read/write or
read-only. Attributes can be required or optional.

CSV Comma-separated Values are plain text value fields
separated by commas. CSV file formats can be
opened by spreadsheet program and can be used as
a format for data exchange between applications or
devices.

Definition element Definition elements are associated with a Device
Information Model and describe the model data
structure and usage. A definition element can have a
value or provide a container for other elements. The
Device Information Model defines the following
elements:

• model

• point

• point group

• symbol

• comment

Definition elements have attributes that qualify or
describe the element.

Device A device is an entity that exchanges data across
communications interfaces. A device has a data set,
modeled by Device Information Models, that describes
physical and state information about the device. The
device data set is the set of logically-related data
points specific to the device type. The collection of
Device Information Models that describe the data set
corresponds to the full set of device data points
supported by the device.

SunSpec Device Information Model Specification 11 sunspec.org

Device Information Model The Device Information Model is used to structure
device data for exchange across communications
interfaces. The model provides a mechanism for
specifying the data set supported by a device, which
consists of a set of standardized definition elements.

Device Information Model definition A Device Information Model definition specifies the
data points that make up the Device Information
Model and the usage information associated with
each data point. There is one definition for each
Device Information Model. Device Information Model
definitions represent collections of device data points.
The canonical form of Device Information Model
definitions is specified using JSON encoding.

Device Information Model instance A Device Information Model instance is created from a
Device Information Model definition. The instance
includes data point values specified for each of the
defined data points. There can be any number of
instances of a Device Information Model.

JSON JavaScript Object Notation is a lightweight format
used for data exchange. The canonical form of Device
Information Model definitions is specified using JSON
encoding. This document specifies JSON encoding
for Device Information Model instances.

Modbus Modbus is a communication protocol for transmitting
information between devices using a serial or TCP/IP
communication interface. This document specifies
Modbus encoding for Device Information Model
instances.

Model A Device Information Model model element defines a
logical grouping of points. Each model has a unique
model ID.

MUST, MUST NOT, REQUIRED,
SHALL, SHALL NOT, SHOULD,
SHOULD NOT, RECOMMENDED,
MAY, and OPTIONAL

The keywords "MUST", "MUST NOT", "REQUIRED",
"SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL"
in this specification, are to be interpreted as described
in IETF RFC 2119.

Point A Device Information Model point element defines a
device data point and has a value.

Point group A Device Information Model group element contains a
group of points and/or other point groups.

Point group, top-level The top-level point group is the first element of a
Device Information Model and contains all other
elements.

SunSpec Device Information Model Specification 12 sunspec.org

RESTful web service A RESTful web service is an architectural style that
uses Representational State Transfer (REST) for web
applications to access web service resources. REST
HTTP methods for access resources include GET,
PUT, POST, and DELETE.

Symbol A Device Information Model symbol element defines a
name-value pair. It is used to represent a constant
value associated with the enumerated value or bit
position of a point.

UTF-8 UTF-8 is a method for encoding Unicode characters
using 8-bit sequences that can include one or more
bytes.

SunSpec Device Information Model Specification 13 sunspec.org

2 Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14,
RFC 2119, DOI 10.17487/RFC2119, March 1997, https://www.rfc-editor.org/info/rfc2119.

[RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO 10646", RFC 2279, DOI
10.17487/RFC2279, January 1998, https://www.rfc-editor.org/info/rfc2279.

[RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data Interchange Format",
RFC 7159, DOI 10.17487/RFC7159, March 2014, https://www.rfc-editor.org/info/rfc7159.

Modbus IDA, MODBUS Application Protocol Specification v1.1b3, North Grafton,
Massachusetts, www.modbus.org/specs.php, April 26, 2012.

Modbus IDA, MODBUS/TCP Security Protocol Specification v21, North Grafton, Massachusetts,
www.modbus.org/specs.php, July 24, 2018.

IEEE 754-2008, IEEE Standard for Floating-Point Arithmetic, August 29, 2008,
https://ieeexplore.ieee.org/servlet/opac?punumber=4610933.

http://www.rfc-editor.org/info/rfc2119
http://www.rfc-editor.org/info/rfc2279
http://www.rfc-editor.org/info/rfc7159
http://www.modbus.org/specs.php
http://www.modbus.org/specs.php

SunSpec Device Information Model Specification 14 sunspec.org

3 Overview
This section introduces Device Information Model definition and usage.

Device Information Model definitions represent collections of device data points. A device
implementation based on the information models can use the model definitions to standardize
the interface to device data points. This includes logically grouping the information to
correspond to the data point grouping requirements of a device.

3.1 Device Information Model Structure

Device Information Models are defined using the following definition elements:

• model

• point

• point grouping

• symbol

• comment

The point definition element represents the Device Information Model data, and the other
definition elements govern data structuring and usage. The following figure shows the primary
definition elements’ structural relationship.

Figure 2: Device Information Model Elements

SunSpec Device Information Model Specification 15 sunspec.org

3.1.1 Model

The model definition element includes all the definition elements. It is used as the container for
the logically related set of device data points, for a particular model.

3.1.2 Point

The point definition element defines a Device Information Model data point. Point elements hold
data values that correspond to a device property. There are typically multiple point definitions in
the model definition.

3.1.3 Point Group

The point group definition element provides a way to logically group a set of points. There are
three reasons to group points:

• The top-level model organization construct is always a point group. The first element in a
model definition is the top-level point group and includes all the point and point group
definitions in the model.

• A repeating set of points can be grouped, creating multiple instances of the point group
that can be accessed as an array of point groups.

• A set of points with synchronous operational requirements can be grouped, indicating
that the points in the group must be read and written atomically.

3.1.4 Symbol

The symbol definition element assigns identifiers to values associated with a point definition
element. Symbols define the set of valid values for the point and provide identifiers that can be
used to represent the value.

3.1.5 Comment

The comment definition element associates a comment string with any of the other definition
elements. It can be used to document the element definition.

3.2 Device Information Model Definition and Instance Relationship

It is important to understand the relationship between a Device Information Model definition and
a Device Information Model instance.

A Device Information Model definition specifies the data points that make up the Device
Information Model and the usage information associated with each data point. There is one
definition for each Device Information Model.

SunSpec Device Information Model Specification 16 sunspec.org

Figure 3: Device Information Model Definition-Instance Map

A Device Information Model instance is created from a Device Information Model definition. The
instance includes data point values specified for each of the defined data points. There can be
any number of Device Information Model instances.

The canonical form of Device Information Model definitions is specified in a JSON encoding. For
convenience, alternative Device Information Model definition representations can be used
provided they preserve all the Device Information Model definition content. In addition to the
canonical JSON encoding, this specification standardizes a CSV encoding for Device
Information Model definitions to support a spreadsheet presentation of the definitions.

3.3 Device Information Model Usage

Devices use the Device Information Model definitions that represent the data points supported
by the device. Further, a device implementation includes the collection of Device Information
Models that correspond to the full set of device data points.

SunSpec Device Information Model Specification 17 sunspec.org

Figure 4: Device Information Model Instance

Information can be exchanged with a device by requesting some or all the device data points,
using a communication interface that implements the standardized Device Information Models.
Device Information Model definitions are interface-independent. This specification standardizes
Device Information Model usage for both Modbus, and JSON data representations.

SunSpec Device Information Model Specification 18 sunspec.org

3.3.1 Modbus

Device Information Models can be mapped into a Modbus address space. A collection of Device
Information Models can be used to create a Modbus map that corresponds to the data points
supported by the device.

3.3.2 JSON

Device Information Model contents can be represented as JSON objects. Devices can access
data points supported by the device through an interface that supports JSON objects, such as a
RESTful web service.

SunSpec Device Information Model Specification 19 sunspec.org

4 Device Information Model Definition
Device Information Models are defined using standardized elements. Each Information Model
Definition includes the definition elements specified in this section.

4.1 Definition Elements

A model definition MAY have the following elements:

Element Description

model A logical grouping of data points that are assigned a model ID.

group A group of points or point groups. A model can have multiple point groups
and point groups can be nested. A model always has a top-level point
group that includes all points and point groups in the model. A model can
only have one top-level point group.

point A data point that has a value.

symbol A name-value pair used to represent a constant value associated with an
enumerated value or bit position in a point.

comment The text used to annotate the information model definition. Comments are
associated with any definition element (model, group, point, or symbol) in
the model definition.

Table 1: Model Definition Elements

4.1.1 Model Element

The model element includes all the other definition elements associated with the model.

A model definition MUST have a top-level point group that includes all the points and point
groups in the model.

A model definition MUST include the following two points as the first two element definitions
inside the top-level point group:

• model ID with an identifier of ID

• model length with an identifier of L

The value of the ID point MUST be a SunSpec model ID which is a unique integer between 1

and 65535, inclusive. SunSpec model IDs are administered by the SunSpec Alliance.

The value of the model length L point MUST be 0 (zero) in the model definition. The model

length point may not be used in some encodings. When the model length is used, as in a
Modbus map, the length point (L) MUST be set to the length of that model instance. Some

model definitions have elements that may vary in size, which causes the model instance length
to vary.

The order of members of a model element is significant and MUST be maintained.

See Table 2: Element Attributes for the valid mandatory and optional element attributes for a
model element definition.

SunSpec Device Information Model Specification 20 sunspec.org

4.1.2 Point Group Element

The point group element includes point elements or other point group elements.

The point group type MUST either be group or sync.

The group point group type is used to create a set of points and point groups. If the count for the
point group is greater than one, the point group repeats the number of times specified by count.
The count attribute can be defined as a constant in the point group definition or be specified as
the value of another point in the model definition. If the point group count is specified in another
point, that point MUST be defined in the top-level point group of the model before the point
group definition.

The sync point group type is used to designate points and point groups that MUST be read and
written atomically. Implementations MUST indicate an error if all the members of a sync group
are not able to be read or written atomically.

The order of the point group members is significant and MUST be maintained.

All points in a point group MUST be defined before any point groups are defined.

See Table 2: Element Attributes for the valid mandatory and optional element attributes for a
point group element definition.

4.1.3 Point Element

The point element defines a data point element.

The size of the data element MUST be specified for points that have a type of string.

If the count for the point is greater than one, the point repeats the number of times specified by
the count. The count attribute can be defined as a constant in the point definition or be specified
as a value of another point in the model definition. If the point count is specified in another point,
that point MUST be defined in the top-level point group of the model before the point definition.

See Table 2: Element Attributes for the valid mandatory and optional element attributes for a
point element definition.

4.1.4 Symbol Element

The symbol element associates an ID with a constant point value in a point definition.

The symbol element MUST be associated with a point definition. A point definition MAY have
multiple symbols associated with it. Each symbol ID MUST be unique for that point definition.
The symbol definitions for a point definition serve as a set of possible enumerated values that
are valid for the point. If a point has associated symbols defined, all values not in the set of
symbol definitions MUST be considered invalid by an implementation.

See Table 2: Element Attributes for the valid mandatory and optional element attributes for a
symbol element definition.

4.1.5 Comment Element

The comment element is a single string and is associated with any valid definition element other
than a comment element. A definition element MAY have multiple comments associated with it.

The comment element permits additional element definition annotation beyond the element
definition attributes shown in Table 2: Element Attributes.

SunSpec Device Information Model Specification 21 sunspec.org

4.2 Element Attributes

Definition elements include attributes that qualify or describe the element. Table 2: Element
Attributes shows the attributes associated with each element definition type. The table also uses
the following notation to indicate which attributes are associated with each element type:

• Model

• Point Group

• Point

• Symbol

Additionally, for each element type, R indicates the attribute is required in an element definition
and O indicates the attribute is optional.

Attribute Description M G P S

ID The element ID. R R R R

Points An array of point definitions in a point group. R

Group An array of point elements or other point group elements. R

Groups An array of point group definitions in a point group. O

Value If present, a constant value associated with the element. O R

Type The element type. R R

Count The occurrence count of the element. O O

Size The element size. Mandatory when type is string. O

Scale Factor If present, the scale factor point associated with the
element.

O

Units If present, the units associated with the element. O

Access Element access, read or read/write. If not present, defaults
to read. (R or RW)

O

Mandatory Element is mandatory/optional. If not present, default to
optional. (M or O)

O

Label Short label associated with the element. R R O O

Description Description associated with the element. O O O O

Symbols A name-value pair used to represent a constant value
associated with an enumerated value or bit position in a
point.

O

O

O

O

Detailed Description A detailed note to describe the usage of the point. This
attribute may include examples.

O O O O

Standards This list mentions all the standards/grid codes in which the
point is mandatory for compliance.

O O O O

Table 2: Element Attributes

Optional attributes may have a default value and the default value may be different for different

SunSpec Device Information Model Specification 22 sunspec.org

element types.

If an attribute does not have an entry in the table for an element type, the attribute MUST NOT
be used in an element definition for that element type.

4.2.1 ID

The ID attribute is the element name and MUST be unique in the immediate group in which it is
defined. An ID MUST consist of only alphanumeric characters and the underscore character.

The ID attribute for a model element MUST be the numeric SunSpec model id.

4.2.2 Points

The points attribute is a point definition array of points contained in the point group.

4.2.3 Groups

The groups attribute is a point group definitions array of point groups contained in the point
group.

4.2.4 Type

The type attribute is the element type. Table 3: Point Element Type Attribute Values describes
the possible type values for point elements and Table 4: Point Group Element Type Attribute
Values specifies the possible type value for group elements.

4.2.5 Value

The value attribute is the constant value associated with the element. If the element does not
have a constant value, the value attribute MUST be omitted.

If a point does not have a valid value, the unimplemented value MUST be used for the value.
During device operation, the point value MAY change from the unimplemented value to a valid
value or from a valid value to the unimplemented value at any time.

If the element contains a constant value, its model definition file encoding SHALL follow the
conventions listed in Table 16: Point Type Mapping to JSON Type.

SunSpec Device Information Model Specification 23 sunspec.org

Type Description

int16 Signed 16-bit integer

int32 Signed 32-bit integer

int64 Signed 64-bit integer

raw16 16-bit raw value

uint16 Unsigned 16-bit integer

uint32 Unsigned 32-bit integer

uint64 Unsigned 64-bit integer

acc16 Unsigned 16-bit accumulator
(deprecated in favor of uint16)

acc32 Unsigned 32-bit accumulator (deprecated in favor of uint32)

acc64 Unsigned 64-bit accumulator (deprecated in favor of uint64)

bitfield16 16-bit bitfield

bitfield32 32-bit bitfield

bitfield64 64-bit bitfield

enum16 16-bit enumeration

enum32 32-bit enumeration

float32 32-bit floating-point

float64 64-bit floating-point

string String (UTF-8 encoded)

sunssf Scale factor – Signed power of 10 multiplier (+) or divider (-)

pad 16-bit pad used for alignment

ipaddr IP Address as an unsigned 32-bit.

ipv6addr 16-byte IP V6 address

eui48 48-bit MAC address

Table 3: Point Element Type Attribute Values

Type Description

group Group

sync Synchronization group

Table 4: Point Group Element Type Attribute Values

SunSpec Device Information Model Specification 24 sunspec.org

4.2.6 Count

The count attribute specifies the number of occurrences of the element in the model. The count
is commonly used to specify the number of occurrences of a point group but it may also be used
to specify a single repeating point.

The count MAY be specified as a constant value in the model definition, or by another point in
the model that contains the count.

If the count is specified by another point in the model, the specifying point MUST be defined in
the top-level point group before the element that the count applies to. The value of a point
containing a count MUST be static and not change over time.

4.2.7 Size

The size attribute specifies the maximum element length in 16-bit words. The size attribute
MUST be provided for the string point type and MAY be provided for the pad type. The size
attribute MUST not be provided for any other type.

4.2.8 Scale Factor

As an alternative to floating-point format, values are represented by integer values with a signed
scale factor applied. A negative scale factor explicitly shifts the decimal point to the left, and a
positive scale factor shifts the decimal point to the right by the number of places specified in the
scale factor value.

The scale factor attribute specifies a scale factor to be used with the point element. The scale
factor may be another point defined in the model or a constant value. If the scale factor specifies
another point defined in the model, the referenced point MUST be defined as a scale factor type
(sunssf).

If a constant value is specified, the value MUST be a valid scale factor multiplier.

The value of a scale factor point MUST be static and MUST NOT change over time.

4.2.9 Units

The units attribute is a string that specifies the units associated with the element.

Units are defined as needed by specific models. Where units are shared across models, care is
taken to ensure a common definition of those units.

4.2.10 Access

The access attribute specifies if the element is writable or read-only. If specified, the value
MUST be read-only (R) or read/write (RW). If not specified, the default access is read-only.

4.2.11 Mandatory

The mandatory attribute specifies whether the element is required to be implemented. If
specified, the value MUST be either mandatory (M) or optional (O). If not specified, the default

value is optional. Points specified as mandatory MUST always have a valid value. Points
specified as optional may have the unimplemented value for the corresponding point type.

4.2.12 Label

The label attribute specifies a short label associated with the element.

SunSpec Device Information Model Specification 25 sunspec.org

4.2.13 Description

The description attribute provides a brief description of the element..

4.2.14 Symbols

A name-value pair used to represent a constant value associated with an enumerated value or
bit position in a point.

4.2.15 Detailed Description

The detailed description of a point adds information to clarify the usage or special requirements for
the point. This may include examples to clearly define the usage of the point.

4.2.15 Standards
This field is a list of all the standards for which the point is required/mandatory. The Standards field
helps in mapping the requirements of a specific grid code/standard.

SunSpec Device Information Model Specification 26 sunspec.org

5 Device Information Model Definition Encoding
The canonical format used to define SunSpec Device Information Models is JSON.

An alternative CSV encoding is also specified in this document to support a spreadsheet
presentation of Device Information Model definitions.

5.1 JSON Message Encoding

This section describes the method of representing Device Information Model definitions in
JSON.

Model definitions defined in JSON MUST be encoded using UTF-8.

5.1.1 Element Types

Table 5: Definition Element JSON Encoding shows the JSON name and value type used for
element type definitions.

Element JSON Name JSON Value

Model model Object of model elements

Point Group groups Object of group elements

Point points Object of point attributes

Symbol symbols Array of symbol objects

Comment comments Array of comment strings

Table 5: Definition Element JSON Encoding

5.1.2 Element Attribute Types

Table 6: JSON-encoded Element Attribute Types shows the JSON name and value type used
for element attribute type definitions.

SunSpec Device Information Model Specification 27 sunspec.org

Attribute JSON Name JSON Values

ID id

Value value

Type type int16, int32, int64, uint16, raw16,

uint32, uint64, acc16, acc32, acc64,

bitfield16, bitfield32, bitfield64,

enum16, enum32, float32, float64,

string, sunssf, pad, ipaddr, ipv6addr,

eui48, group, sync

Count count

Size size

Scale Factor sf

Units units

Access (R/RW) access R, RW

Mandatory (M/O) mandatory M, O

Label label

Description desc

Detailed Description detail

Standards standards Array of standards strings, e.g., [IEEE 1547-2018]

Table 6: JSON-encoded Element Attribute Types

5.1.3 Model Encoding

A model definition MUST be represented as an object with a single property named model and
an object as the value. See Appendix A for model definition examples.

The object value of model MUST have two properties: id and group. The value of the id

property MUST be the SunSpec numeric model ID.

The value of the group property MUST be an object that includes the contents of the rest of

the model definition. The group property represents the required single top-level point group in

the model.

The model object MUST have a label property and MAY have desc, and comments

properties.

The following example shows the model element encoding.

{"model": {

"id": <model id>,

"group": {

<rest of model content>

}

"label": <model label>,

"desc": <model description>

}

SunSpec Device Information Model Specification 28 sunspec.org

5.1.4 Point Group Encoding

A point group definition MUST be represented as an object with the required and optional
properties for a point group.

A point group definition MUST have a property named type that has a group value identifying

the object as a point group definition.

A point group definition MAY have a property named comments that is an array holding the

comment strings associated with the point group.

The following example shows the point group element encoding.

{

"name": <point group name>,

"type": <point group type>,

"count": <point group count>,

"label": <point group label>,

"desc": <point group description>,

"points": [<points>],

"groups": [<point groups>], "comments": [<comment strings>]}

5.1.5 Point Encoding

A point definition MUST be represented as an object with the required and optional point
properties for a point.

A point definition MUST have a property named type that has a value of point identifying the

object as a point definition.

A point definition MAY have a property named symbols that is an array holding the symbols

associated with the point.

A point definition MAY have a property named comments that is an array holding the comment

strings associated with the point.

The following example shows the point element encoding.

{

"name": <point name>,

"value": <point value>,

"type": <point type>,

"count": <point count>,

"size": <point size>,

"sf": <point scale factor>,

"units": <point units>,

"access": <point access>,

"mandatory": <point mandatory>,

"label": <point label>,

"desc": <point description>,

"symbols": [<symbols>],

"comments": [<comment strings>],

“detail”: <point detailed description>,

“standards”: [<standards>]

}

SunSpec Device Information Model Specification 29 sunspec.org

5.1.6 Symbol Encoding

A symbol definition MUST be represented as an object with the required and optional properties
for a symbol.

A symbol definition MAY have a property named comments that is an array holding the

comment strings associated with the symbol.

The following example shows the symbol element encoding.

{

"name": <symbol name>,

"value": <point value>,

"label": <point label>,

"desc": <point description>,

"comments": [<comment strings>]

}

5.1.7 Comment Encoding

A comment definition MUST be represented as a string. Comments are associated with other
elements as an array of comments in the element definition.

5.2 CSV Encoding

There is a one-to-one mapping between CSV model definition attributes and the JSON
definition. The JSON encoding is the canonical form of a Device Information Model, and the
CSV encoding is supported for convenience in creating and inspecting model definitions using a
spreadsheet application.

A spreadsheet renders the encoding as a row and column matrix. Each row in the spreadsheet
defines a model definition element. Each column represents an element attribute. The CSV
encoding could be instantiated in several ways, such as an Excel spreadsheet.

The CSV encoding is defined such that a JSON encoding can be generated from the CSV
encoding.

5.2.1 Columns

The column names in Table 7: Spreadsheet Column Encoding specified as mandatory MUST
be used as the column names in the spreadsheet encoding. Other columns MAY be included in
the encoding at any column location. The names specified as optional in the table are included
for convenience.

SunSpec Device Information Model Specification 30 sunspec.org

Column Name Mandatory/Optional

Name Mandatory

Value Mandatory

Type Mandatory

Count Mandatory

Size Mandatory

Scale Factor Mandatory

Units Mandatory

RW Access (RW) Mandatory

Mandatory (M) Mandatory

Static (S) Mandatory

Label Mandatory

Description Mandatory

Detailed Description Mandatory

Standards Mandatory

Notes Optional (used for draft models, not included in approved models)

Address Offset Optional. Offset of the element from the beginning of the Information
Model, if known. Typically generated from definition information.

Group Offset Optional. Offset of the element from the beginning of the immediate
containing group. Typically generated from definition information.

Table 7: Spreadsheet Column Encoding

The Name, Value, and Type fields are used to determine the definition element type. The
following rules specify how to interpret each element when a spreadsheet is used to define a
model.

Model Model is the model ID as represented in the value of the point ID.

Point group Type is a point group type. Because point groups can be nested, point group IDs

reflect the hierarchy of the point groups. A dot (.) delimits hierarchical levels.

Point Type is a point type.

Symbol The symbol is a key-value pair associated with the last point defined.

Comment Any line with no Type and no Value values. The comment only consists of the

contents of the first column value in the row. A comment is associated with the next

defined element. An element may have more than one comment associated with it.

Blank line Any row with no value in any column. Blank lines are not preserved in the model

definition.

SunSpec Device Information Model Specification 31 sunspec.org

5.2.2 Rows

Rows in the spreadsheet MUST consist of all the point group, point, symbol, and comment
elements included in the model definition. The sequence of ordered elements MUST be
preserved.

The name strings specified in the JSON encoding MUST be used for all type and type value
representations.

To represent the point group hierarchy, the ID of any point or point group not defined in the top-
level point group MUST have each point group to which the element belongs below the top-level
point group prepend to its ID using a period (.) as a separator between IDs.

SunSpec Device Information Model Specification 32 sunspec.org

6 Device Information Model Usage for Modbus
This section specifies Modbus Device Information Model instance encoding. An Information
Model instance includes the values associated with the defined content of a model.

6.1 Device Modbus Map

Device Information Models are used to construct a device Modbus map. The Information
Models that represent the functionality implemented in the device are placed contiguously in the
Modbus address space at a defined location as specified in this section.

Figure 5: Device Modbus Map

All SunSpec Device Information Model maps MUST begin with the SunS identifier. The

identifier is followed sequentially by common, standard, and vendor Device Information Models,
as needed. An end model terminates the map. There is no requirement for any model ordering
other than the end model must be the last model in the sequence.

6.1.1 Modbus Address Location

All Modbus device maps MUST be in the holding register address space.

The beginning of the device Modbus map MUST be located at one of three Modbus addresses
in the Modbus holding register address space: 0, 40000 (0x9C40) or 50000 (0xC350). These
Modbus addresses are the full 16-bit, 0-based addresses in the Modbus protocol messages.

The first two Modbus registers at the start address MUST have the following well-known
constant values as a marker: 0x5375, 0x6E53 (hexadecimal values of the ASCII string SunS).

6.1.2 Information Models

The Device Information Models MUST be placed contiguously, beginning immediately after the
SunS marker registers. Each Information Model MUST have registers corresponding to all the

points in the Information Model, including those specified as optional or unimplemented. Points
in a model MUST be placed such that there are no additional Modbus registers between points
specified in the model definition. Points that are not supported or have no valid value MUST be
assigned the appropriate unimplemented value based on the point type. There MUST NOT be
additional Modbus registers between Information Models in the device Modbus map.

The length point (L) in an information model instance MUST be set to the remaining number of

Modbus registers in the model following the length point.

SunSpec Device Information Model Specification 33 sunspec.org

A Modbus register map representing a Device Information Model MUST preserve the order of
points and groups defined within the model. Such Modbus register maps MUST have group
point elements placed before group elements, at lower register indices, and all instances of
repeated point or group elements MUST be consecutive.

6.1.3 End Model

The last Information Model in the device Modbus map MUST be a two-register empty model
with a model ID of 0xFFFF and a model length of 0.

6.2 Device Information Model Discovery

A discovery mechanism can be employed to determine the type and location of each of the
Information Models in the device map.

Device architects may choose to implement different collections of Information Models in
arbitrary order. In any implementation, after the Modbus address of a particular model is
determined, the Modbus location of the points in the model are then known based on the model
definition.

All Information Models start with an id register and a length register. This information is used to
step through or scan the Information Models even if the ID and contents of an Information Model
are not understood by the scanning application. This permits implementations to find and use
the Device Information Model(s) they understand and ignore those whose definitions are
unknown.

The following procedure is used for Information Model discovery:

1. Read the contents of addresses 0, 40000, and 50000 until the well-known marker is
found.

2. Repeat the following steps until a model id of 0xFFFF is found:

1) Read the next two registers to get the ID and length of the next Information
Model.

2) Add the length to the Modbus address of the next register after the length
register to determine the starting address of the subsequent Information Model.

3. When this process is complete, the Modbus address and ID of each Information Model is
known.

6.3 Modbus Functions

The Modbus interface MUST comply with the Modbus standard for the functionality specified in
this section.

The interface MUST support function code 3 (Read Holding Registers), function code 6 (Write
Single Register), and function code 16 (0x10) (Write Multiple Registers).

If Modbus support is provided in the device, it MUST support a Modbus serial interface and/or a
Modbus TCP/IP interface.

In addition, Modbus RTU devices MUST support “broadcast mode” as defined in MODBUS over
Serial Line Specification and Implementation Guide V1.02.

https://www.modbus.org/docs/Modbus_over_serial_line_V1_02.pdf
https://www.modbus.org/docs/Modbus_over_serial_line_V1_02.pdf

SunSpec Device Information Model Specification 34 sunspec.org

6.4 Value Representation

Values are stored in big-endian order and MUST be compliant with the Modbus specification. All
integer values are documented as signed or unsigned. All signed values are represented using
a two’s-compliment format.

6.4.1 16-bit Integer Values

16-bit integers are stored using one register in big-endian order.

Modbus Register 1

Byte 0 1

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 8: Modbus 16-bit Integer Value Register

int16 Range: -32767... 32767 NOT IMPLEMENTED value: 0x8000

uint16 Range: 0 ... 65534 NOT IMPLEMENTED value: 0xFFFF

raw16 Range:

acc16 Range: 0 ... 65535 NOT ACCUMULATED value: 0x0000

enum16 Range: 0 ... 65534 NOT IMPLEMENTED value: 0xFFFF

bitfield16 Range: 0 ... 0x7FFF NOT IMPLEMENTED value: 0xFFFF

Pad Range: 0x8000 Always returns 0x8000

6.4.2 32-bit Integer Values

32-bit integers are stored using two registers in big-endian order.

Modbus Register 1 2

Byte 0 1 2 3

Bits 31 … 24 23 … 16 15 … 8 7 … 0

Table 9: Modbus 32-bit Integer Value Registers

int32 Range: -2147483647 ... 2147483647 NOT IMPLEMENTED value: 0x80000000

uint32 Range: 0 ... 4294967294 NOT IMPLEMENTED value: 0xFFFFFFFF

acc32 Range: 0 ... 4294967295 NOT ACCUMULATED value: 0x00000000

enum32 Range: 0 ... 4294967294 NOT IMPLEMENTED value: 0xFFFFFFFF

bitfield32 Range: 0 ... 0x7FFFFFFF NOT IMPLEMENTED value: 0xFFFFFFFF

ipaddr 32 bit IPv4 address NOT CONFIGURED value: 0x00000000

SunSpec Device Information Model Specification 35 sunspec.org

Not Configured: 0 ipv6addr 128 bit IPv6 address

6.4.3 64-bit Integer Values

64-bit integers are stored using four registers in big-endian order.

Modbus Register 1 2

Byte 0 1 2 3

Bits 63 … 56 55 … 48 47 … 40 39 … 32

Table 10: Modbus 64-bit Integer Value High Registers

Modbus Register 3 4

Byte 4 5 6 7

Bits 31 … 24 23 … 16 15 … 8 7 … 0

Table 11: Modbus 64-bit Integer Value Low Registers

int64 Range: -9223372036854775807 ...
9223372036854775807

NOT IMPLEMENTED value:
0x8000000000000000

uint64 Range: 0 ... 18,446,744,073,709,551,615 NOT IMPLEMENTED value:

0xFFFFFFFFFFFFFFFF

acc64 Range: 0 ... 9223372036854775807 NOT ACCUMULATED value: 0

6.4.4 128-bit Integer Values

128-bit integers are stored using eight registers in big-endian order.

Table 12: Modbus 128-bit Integer Value Registers

ipv6addr 128 bit IPv6 address NOT CONFIGURED value: 0

6.4.5 String Values

Store variable length string values in a fixed size register range using a NULL (0 value) to
terminate or pad the string. For example, up to 16 characters can be stored in 8 contiguous
registers as follows.

Modbus Register 1 2 3 4 5 6 7 8

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Character E X A M P L E spc S T R I N G ! NULL

Table 13: Modbus String Value Registers

SunSpec Device Information Model Specification 36 sunspec.org

NOT_IMPLEMENTED value: all registers filled with NULL, or 0x0000

It is recommended that an empty string be represented with the first register, with a value of
0x0080.

Strings MUST be UTF-8 encoded.

6.4.6 32-bit Floating-point Values

Floating-point 32-bit values are encoded according to the IEEE 754 floating-point standard.

Modbus Register 1

Byte 0 1

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IEEE 754 sign Exponent Fraction

Table 14: Modbus 32-bit Floating-point Value High Register

Modbus Register 2

Byte 2 3

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IEEE 754 Fraction least

Table 15: Modbus 32-bit Floating-point Value Low Register

float32 Range: see IEEE 754 NOT IMPLEMENTED value: 0x7FC00000 (NaN)

6.4.7 64-bit Floating-point Values

Floating-point 64-bit values are encoded according to the IEEE 754 floating-point standard.

Modbus Register 1

Byte 0 1

Bits 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

IEEE 754 sign Exponent Exponent Fraction

Table 16: Modbus 64-bit Floating-point Register 1

Modbus Register 2

Byte 2 3

Bits 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

IEEE 754 Fraction

Table 17: Modbus 64-bit Floating-point Register 2

SunSpec Device Information Model Specification 37 sunspec.org

Modbus Register 3

Byte 4 5

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IEEE 754 Fraction

Table 18: Modbus 64-bit Floating-point Register 3

Modbus Register 4

Byte 6 7

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IEEE 754 Fraction

Table 19: Modbus 64-bit Floating-point Value Register 4

float64 Range: see IEEE 754 NOT IMPLEMENTED value:
0x7FF8000000000000

6.4.8 sunssf

SunSpec scale factor.

Modbus Register 1

Byte 0 1

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 20: Modbus sunssf Value Registers

sunssf signed range: -10 ... 10 NOT IMPLEMENTED value: 0x8000

6.5 Verifying Written Values

It is common practice with Modbus devices to perform a read operation after a write operation to
verify that the values were successfully written. The written values should be read with a maximum
delay of 1000 ms for a successful write operation.

When a read operation is performed, the values returned MUST reflect the values contained in
the last write request that returned a successful response. The successful write and subsequent
read of the values only confirms successful information exchange and does not imply any
updates to operational behavior of the device associated with the information.

6.6 Modbus Error Handling

This section describes the required Modbus error handling procedures.

SunSpec Device Information Model Specification 38 sunspec.org

6.6.1 Unimplemented Registers

When reading an unimplemented register, the unimplemented value for the data point type
MUST be returned.

When writing an unimplemented register, a Modbus exception MUST be generated. The
Modbus exception MUST be either exception code 2, 3, or 4.

6.6.2 Writing Invalid Value

When writing an invalid value to a register, a Modbus exception MUST be generated. The
Modbus exception MUST be either exception code 2, 3, or 4.

If the register definition specifies a set of enumerated values and not all values are supported,
the invalid value behavior applies. If the register only supports a single valid value, the register
MUST remain writable and accept the writing of the valid value. The register MUST NOT be
implemented as read-only.

6.6.3 Writing a Read-Only Register

When writing a read-only register, a Modbus exception MUST be generated. The Modbus
exception MUST be either exception code 2, 3, or 4.

6.7 Security

Modbus/TCP security SHALL be compliant with the Modbus/TCP Security specification
https://modbus.org/docs/MB-TCP-Security-v21_2018-07-24.pdf .

SunSpec Device Information Model Specification 39 sunspec.org

7 Device Information Model Usage for JSON
This section specifies JSON Information Model instance encoding. An Information Model
instance contains the values associated with the defined content of a model.

The following rules apply for mapping Information Model content to a JSON encoded object:

• A Model element is represented as a JSON object.

• A Point Group element is represented as a JSON object.

• A Point element is represented as a JSON number or a JSON string. The mapping of
each point type is shown in Table 21: Point Type Mapping to JSON Type.

• Repeating elements are represented as a JSON array containing the repeated elements.

• Unimplemented values are omitted or contain a value of null.

SunSpec Device Information Model Specification 40 sunspec.org

Type JSON Encoding

int16 number

int32 number

int64 number

raw16 number

uint16 number

uint32 number

uint64 number

acc16 number

acc32 number

acc64 number

bitfield16 number

bitfield32 number

bitfield64 number

enum16 number

enum32 number

float32 number

float64 number

string string

sf number

pad N/A

ipaddr number or hexadecimal string or convert to IP address string (x.x.x.x)

ipv6addr hexadecimal string or convert to IP address string

eui48 number or hexadecimal string or convert to MAC string (xx:xx:xx:xx:xx:xx)

Table 21: Point Type Mapping to JSON Type

SunSpec Device Information Model Specification 41 sunspec.org

Appendix A: Model Definition Examples
This appendix contains examples of model definitions using both CSV encoding and canonical
JSON encoding. The same, simple sample model definition is used throughout the document for
both model definition and instance examples.

The example model definition is a simple model containing three points and a point group that
contains two points. The point group count is contained as a data point. The model is 550 and
the name of the model point group is SampleModel.

Spreadsheet Model Definition Example

The spreadsheet encoding provides a convenient mechanism for easily viewing the contents of
a device information model. The basis of the spreadsheet visualization is CSV encoding. This
example shows the CVS representation of the sample model definition and an example of the
information in spreadsheet form:

In the example, visual cues, such as color-coding point groups, are added for clarity. A
spreadsheet representation should not add to the model definition contents but may use visual
elements to help understand the model definition contents.

SunSpec Device Information Model Specification 42 sunspec.org

CSV Model Definition Encoding Example

The CSV encoding is the basis of the spreadsheet representation. As specified in the CSV
encoding section, the group hierarchy is represented by including the group hierarchy in the
group name. In this example, the Ctl group has the name of SampleModel.Ctl to explicitly

indicate the group hierarchy.

Address Offset,Group Offset,Name,Value,Count,Type,Size,Scale Factor,Units,RW

Access (RW),Mandatory (M),Static (S),Label,Description, Detailed Description,

Standards

Sample model definition to illustrate different model definition

elements,,,,,,,,,,,,,

,,SampleModel,,,group,,,,,,,Sample Model Label,Sample model model.

0,,ID,550,,uint16,,,,,M,,Sample Model name,Sample model model name,ID must be

unique,Standard1.

1,,L,0,,uint16,,,,,M,,Sample Model Length,Sample model model length,,Standard1.

2,,DataPointA,,,int32,,DataPointSF,,,,,Data Point A,Data point A

description,,Standard1.

4,,DataPointB,,,uint16,,,,,,,Data Point B,Data point B description,,Standard1.

5,,DataPointC,,,int16,,,,,,,Data Point C,Data point C description,,.

6,,DataPointSF,,,sunssf,,,,,,,Data Point Scale Factor,,,Standard1,

7,,CtlPointSF,,,sunssf,,,,,,,Control Point Scale Factor,

8,,CtlCount,,,uint16,,,,,,,Count Point Group Count,

9,,Pad,,,pad,,,,,,,,

Control point group containing the control elements that repeat,,,,,,,,,,,,,

,,SampleModel.Ctl,,CtlCount,group,,,,,,,Control Points,Control point group

description,,.

,0,CtlPointA,,,enum16,,,,RW,,,Control Point A,Control point A description,,.

Control Point A enumerated values,,,,,,,,,,,,,

,,VALUE_A,1,,,,,,,,,Value A,Control point A value A description,,.

,,VALUE_B,2,,,,,,,,,Value B,Control point A value B description,,.

,,VALUE_C,3,,,,,,,,,Value C,Control point A value C description,,.

,1,CtlPointB,,,int16,,CtlPointSF,,RW,,,Control Point B,Control point B

description,,.

SunSpec Device Information Model Specification 43 sunspec.org

JSON Model Definition Encoding Example

This example shows the canonical JSON encoding of the device information model definition.

{

"group": {

"comments": [

"Sample model definition to illustrate different model definition elements"

],

"desc": "Sample model model.",

"groups": [

{

"comments": [

"Control point group containing the control elements that repeat"

],

"count": "CtlCount",

"desc": "Control point group description.",

"label": "Control Points",

"name": "Ctl",

"points": [

{

"access": "RW",

"desc": "Control point A description.",

"label": "Control Point A",

"name": "CtlPointA",

"size": 1,

"symbols": [

{

"comments": [

"Control Point A enumerated values"

],

"desc": "Control point A value A description.",

"label": "Value A",

"name": "VALUE_A",

"value": 1

},

{

"desc": "Control point A value B description.",

"label": "Value B",

"name": "VALUE_B",

"value": 2

},

{

"desc": "Control point A value C description.",

"label": "Value C",

"name": "VALUE_C",

"value": 3

}

],

"type": "enum16"

},

{

"access": "RW",

"desc": "Control point B description.",

"label": "Control Point B",

"name": "CtlPointB",

"sf": "CtlPointSF",

"size": 1,

"type": "int16"

}

],

"type": "group"

}

],

SunSpec Device Information Model Specification 44 sunspec.org

"label": "Sample Model Label",

"name": "SampleModel",

"points": [

{

"desc": "Sample model model name.",

"label": "Sample Model name",

"mandatory": "M",

"name": "ID",

"size": 1,

"type": "uint16",

"value": 550,

“detail”: “ID must be unique”,

“standards”: [‘Standard1’]

},

{

"desc": "Sample model model length.",

"label": "Sample Model Length",

"mandatory": "M",

"name": "L",

"size": 1,

"type": "uint16",

"value": 0,

“standards”: [‘Standard1’]

},

{

"desc": "Data point A description.",

"label": "Data Point A",

"name": "DataPointA",

"sf": "DataPointSF",

"size": 2,

"type": "int32",

“standards”: [‘Standard1’]

},

{

"desc": "Data point B description.",

"label": "Data Point B",

"name": "DataPointB",

"size": 1,

"type": "uint16",

“standards”: [‘Standard1’]

},

{

"desc": "Data point C description.",

"label": "Data Point C",

"name": "DataPointC",

"size": 1,

"type": "int16",

“standards”: []

},

{

"label": "Data Point Scale Factor",

"name": "DataPointSF",

"size": 1,

"type": "sunssf"

“standards”: [‘Standard1’]

},

{

"label": "Control Point Scale Factor",

"name": "CtlPointSF",

"size": 1,

"type": "sunssf",

“standards”: []

},

{

SunSpec Device Information Model Specification 45 sunspec.org

"label": "Count Point Group Count",

"name": "CtlCount",

"size": 1,

"type": "uint16",

“standards”: []

},

{

"name": "Pad",

"size": 1,"type":

"pad"

 }

],

 "type": "group" },

 "id": 550

 }

SunSpec Device Information Model Specification 46 sunspec.org

Appendix B: Model Instance Examples
This appendix contains examples of a model instance based on the sample model definition
shown in Appendix A. The model instance examples show the contents of the model definition
with the current values associated with each data point.

JSON Message Encoding Example

This example shows a JSON encoding of the sample model with associated values.

{"SampleModel": {

"id": 550,

"DataPointA": 120,

"DataPointB": 16,

"DataPointC": -3241,

"DataPointSF": 2,

"CtlPointSF": -1,

“CtlCount”: 3,

"Ctl": [

{

"CtlPointA": 2,

"CtlPointB": 102

},

{

"CtlPointA": 2,

"CtlPointB": 420

},

{

"CtlPointA": 1,

"CtlPointB": 310

}

]

}

}

MODBUS Message Encoding Example

The example shows a simplified Modbus map that contains the initial marker, sample model,
and end model. This shows the general Modbus map structure but is not complete because an
actual Modbus map contains additional models.

SunSpec Device Information Model Specification 47 sunspec.org

Modbus Address Register Contents Description

40000 ‘Su’ Beginning of models marker

40001 ‘nS’

40002 1 ID

40003 66 L

… … …

40070 550 (as an example) ID

40071 14 L

40072 0 DataPointA (high order word)

 120 DataPointA (low order word)

40074 16 DataPointB

40075 -3241 DataPointC

40076 2 DataPointSF

40077 -1 CtlPointSF

40078 3 CtlCount

40079 0 Pad

40080 2 CtlPointA[0]

40081 102 CtlPointB[0]

40082 2 CtlPointB[1]

40083 420 CtlPointB[1]

40084 1 CtlPointC[2]

40085 310 CtlPointC[2]

40086 0 Pad

40087 0xFFFF End Model ID

